반응형
블로그 이미지
개발자로서 현장에서 일하면서 새로 접하는 기술들이나 알게된 정보 등을 정리하기 위한 블로그입니다. 운 좋게 미국에서 큰 회사들의 프로젝트에서 컬설턴트로 일하고 있어서 새로운 기술들을 접할 기회가 많이 있습니다. 미국의 IT 프로젝트에서 사용되는 툴들에 대해 많은 분들과 정보를 공유하고 싶습니다.
솔웅

최근에 받은 트랙백

글 보관함


 

 

1. https://matplotlib.org/api/_as_gen/matplotlib.pyplot.html

 

matplotlib.pyplot — Matplotlib 3.0.3 documentation

matplotlib.pyplot matplotlib.pyplot is a state-based interface to matplotlib. It provides a MATLAB-like way of plotting. pyplot is mainly intended for interactive plots and simple cases of programmatic plot generation: import numpy as np import matplotlib.

matplotlib.org

matplotlib.pyplot

matplotlib.pyplot is a state-based interface to matplotlib. It provides a MATLAB-like way of plotting.

pyplot is mainly intended for interactive plots and simple cases of programmatic plot generation:

import numpy as np

import matplotlib.pyplot as plt

x = np.arange(0, 5, 0.1)

y = np.sin(x)

plt.plot(x, y)

The object-oriented API is recommended for more complex plots.

 

2. 함수

3. 위 함수 실행

4. 위 함수 실행

5. https://www.tutorialspoint.com/python_pandas/python_pandas_series.htm

 

Python Pandas Series

Python Pandas - Series Advertisements Series is a one-dimensional labeled array capable of holding data of any type (integer, string, float, python objects, etc.). The axis labels are collectively called index. pandas.Series A pandas Series can be created

www.tutorialspoint.com

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.map.html

 

pandas.Series.map — pandas 0.24.2 documentation

Parameters: arg : function, dict, or Series Mapping correspondence. na_action : {None, ‘ignore’}, default None If ‘ignore’, propagate NaN values, without passing them to the mapping correspondence.

pandas.pydata.org

https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randn.html

 

numpy.random.randn — NumPy v1.16 Manual

Parameters: d0, d1, …, dn : int, optional The dimensions of the returned array, should be all positive. If no argument is given a single Python float is returned.

docs.scipy.org

8. https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.corr.html

 

pandas.DataFrame.corr — pandas 0.24.2 documentation

Parameters: method : {‘pearson’, ‘kendall’, ‘spearman’} or callable pearson : standard correlation coefficient kendall : Kendall Tau correlation coefficient spearman : Spearman rank correlation callable: callable with input two 1d ndarrays and returning a

pandas.pydata.org

9. https://matplotlib.org/api/_as_gen/matplotlib.pyplot.scatter.html

 

matplotlib.pyplot.scatter — Matplotlib 3.0.3 documentation

Parameters: x, y : array_like, shape (n, ) The data positions. s : scalar or array_like, shape (n, ), optional The marker size in points**2. Default is rcParams['lines.markersize'] ** 2. c : color, sequence, or sequence of color, optional The marker color.

matplotlib.org

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.grid.html?highlight=grid#matplotlib.pyplot.grid

 

matplotlib.pyplot.grid — Matplotlib 3.0.3 documentation

Parameters: b : bool or None Whether to show the grid lines. If any kwargs are supplied, it is assumed you want the grid on and b will be set to True. If b is None and there are no kwargs, this toggles the visibility of the lines. which : {'major', 'minor'

matplotlib.org

https://matplotlib.org/api/legend_api.html?highlight=legend#module-matplotlib.legend

 

legend and legend_handler — Matplotlib 3.0.3 documentation

Other Parameters: loc : int or string or pair of floats, default: rcParams["legend.loc"] ('best' for axes, 'upper right' for figures) The location of the legend. Possible codes are: Location String Location Code 'best' 0 'upper right' 1 'upper left' 2 'low

matplotlib.org

11. https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.shuffle.html

 

numpy.random.shuffle — NumPy v1.16 Manual

Modify a sequence in-place by shuffling its contents. This function only shuffles the array along the first axis of a multi-dimensional array. The order of sub-arrays is changed but their contents remains the same. Parameters: x : array_like The array or l

docs.scipy.org

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.iloc.html

 

pandas.DataFrame.iloc — pandas 0.24.2 documentation

Purely integer-location based indexing for selection by position. .iloc[] is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a boolean array. Allowed inputs are: An integer, e.g. 5. A list or array of integers,

pandas.pydata.org

 

 

1. Install XGBOOST https://github.com/conda-forge/xgboost-feedstock

 

conda-forge/xgboost-feedstock

A conda-smithy repository for xgboost. Contribute to conda-forge/xgboost-feedstock development by creating an account on GitHub.

github.com

 

 

 

3. https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html?highlight=read_csv#pandas.read_csv

 

pandas.read_csv — pandas 0.24.2 documentation

Parameters: filepath_or_buffer : str, path object, or file-like object Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. A local file could be: file://local

pandas.pydata.org

 

 

 

 

 

 

12. https://xgboost.readthedocs.io/en/latest/python/python_api.html

 

Python API Reference — xgboost 0.83.dev0 documentation

Python API Reference This page gives the Python API reference of xgboost, please also refer to Python Package Introduction for more information about python package. Core Data Structure Core XGBoost Library. class xgboost.DMatrix(data, label=None, missing=

xgboost.readthedocs.io

 

 

20. 

Plotting API

Plotting Library.

xgboost.plot_importance(booster, ax=None, height=0.2, xlim=None, ylim=None, title='Feature importance', xlabel='F score', ylabel='Features', importance_type='weight', max_num_features=None, grid=True, show_values=True, **kwargs)

Plot importance based on fitted trees.

 

25. predict(data, output_margin=False, ntree_limit=0, pred_leaf=False, pred_contribs=False, approx_contribs=False, pred_interactions=False, validate_features=True)

Predict with data.

Note

This function is not thread safe.

For each booster object, predict can only be called from one thread. If you want to run prediction using multiple thread, call bst.copy() to make copies of model object and then call predict().

Note

Using predict() with DART booster

If the booster object is DART type, predict() will perform dropouts, i.e. only some of the trees will be evaluated. This will produce incorrect results if data is not the training data. To obtain correct results on test sets, set ntree_limit to a nonzero value, e.g.

preds = bst.predict(dtest, ntree_limit=num_round)

30. https://matplotlib.org/api/_as_gen/matplotlib.pyplot.boxplot.html

 

matplotlib.pyplot.boxplot — Matplotlib 3.0.3 documentation

Parameters: x : Array or a sequence of vectors. The input data. notch : bool, optional (False) If True, will produce a notched box plot. Otherwise, a rectangular boxplot is produced. The notches represent the confidence interval (CI) around the median. See

matplotlib.org

31. https://matplotlib.org/api/_as_gen/matplotlib.pyplot.hist.html

 

matplotlib.pyplot.hist — Matplotlib 3.0.3 documentation

Parameters: x : (n,) array or sequence of (n,) arrays Input values, this takes either a single array or a sequence of arrays which are not required to be of the same length. bins : int or sequence or str, optional If an integer is given, bins + 1 bin edges

matplotlib.org

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.axvline.html

 

matplotlib.pyplot.axvline — Matplotlib 3.0.3 documentation

Parameters: x : scalar, optional, default: 0 x position in data coordinates of the vertical line. ymin : scalar, optional, default: 0 Should be between 0 and 1, 0 being the bottom of the plot, 1 the top of the plot. ymax : scalar, optional, default: 1 Shou

matplotlib.org

 

37. https://pandas.pydata.org/pandas-docs/version/0.21/generated/pandas.DataFrame.describe.html

 

pandas.DataFrame.describe — pandas 0.21.1 documentation

percentiles : list-like of numbers, optional The percentiles to include in the output. All should fall between 0 and 1. The default is [.25, .5, .75], which returns the 25th, 50th, and 75th percentiles. include : ‘all’, list-like of dtypes or None (default

pandas.pydata.org

 

반응형

Comment