1. https://matplotlib.org/api/_as_gen/matplotlib.pyplot.html
matplotlib.pyplot
matplotlib.pyplot is a state-based interface to matplotlib. It provides a MATLAB-like way of plotting.
pyplot is mainly intended for interactive plots and simple cases of programmatic plot generation:
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(0, 5, 0.1)
y = np.sin(x)
plt.plot(x, y)
The object-oriented API is recommended for more complex plots.
2. 함수
3. 위 함수 실행
4. 위 함수 실행
5. https://www.tutorialspoint.com/python_pandas/python_pandas_series.htm
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.map.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randn.html
8. https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.corr.html
9. https://matplotlib.org/api/_as_gen/matplotlib.pyplot.scatter.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.grid.html?highlight=grid#matplotlib.pyplot.grid
https://matplotlib.org/api/legend_api.html?highlight=legend#module-matplotlib.legend
11. https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.shuffle.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.iloc.html
1. Install XGBOOST https://github.com/conda-forge/xgboost-feedstock
12. https://xgboost.readthedocs.io/en/latest/python/python_api.html
20.
Plotting API
Plotting Library.
xgboost.plot_importance(booster, ax=None, height=0.2, xlim=None, ylim=None, title='Feature importance', xlabel='F score', ylabel='Features', importance_type='weight', max_num_features=None, grid=True, show_values=True, **kwargs)
Plot importance based on fitted trees.
25. predict(data, output_margin=False, ntree_limit=0, pred_leaf=False, pred_contribs=False, approx_contribs=False, pred_interactions=False, validate_features=True)
Predict with data.
Note
This function is not thread safe.
For each booster object, predict can only be called from one thread. If you want to run prediction using multiple thread, call bst.copy() to make copies of model object and then call predict().
Note
Using predict() with DART booster
If the booster object is DART type, predict() will perform dropouts, i.e. only some of the trees will be evaluated. This will produce incorrect results if data is not the training data. To obtain correct results on test sets, set ntree_limit to a nonzero value, e.g.
preds = bst.predict(dtest, ntree_limit=num_round)
30. https://matplotlib.org/api/_as_gen/matplotlib.pyplot.boxplot.html
31. https://matplotlib.org/api/_as_gen/matplotlib.pyplot.hist.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.axvline.html
37. https://pandas.pydata.org/pandas-docs/version/0.21/generated/pandas.DataFrame.describe.html
'IoT > AI' 카테고리의 다른 글
AWS SageMaker - xgboost : Create Files and and save it to S3 (0) | 2019.05.15 |
---|---|
AWS Machine Learning - Types of ML models etc. (0) | 2019.05.09 |
Elements of AI - 헬싱키 대학 인공지능 강좌 듣고 Deep Learning 앱 개발하기 (0) | 2018.06.30 |
Elements of AI - Summary (0) | 2018.06.29 |
Elements of AI - The societal implications of AI (0) | 2018.06.29 |
Elements of AI - About predicting the future (0) | 2018.06.27 |
Elements of AI - Advanced neural network techniques (0) | 2018.06.25 |
Elements of AI - How neural networks are built (0) | 2018.06.25 |
Elements of AI - Neural network basics (0) | 2018.06.23 |
Elements of AI - Regression (0) | 2018.06.22 |