반응형
블로그 이미지
개발자로서 현장에서 일하면서 새로 접하는 기술들이나 알게된 정보 등을 정리하기 위한 블로그입니다. 운 좋게 미국에서 큰 회사들의 프로젝트에서 컬설턴트로 일하고 있어서 새로운 기술들을 접할 기회가 많이 있습니다. 미국의 IT 프로젝트에서 사용되는 툴들에 대해 많은 분들과 정보를 공유하고 싶습니다.
솔웅

최근에 올라온 글

최근에 달린 댓글

최근에 받은 트랙백

글 보관함

카테고리

Elements of AI - Summary

2018. 6. 29. 05:25 | Posted by 솔웅


반응형

Elements of AI




III.Summary



The most important decisions that determine how well our society can adapt to the changes brought by AI aren’t technological. They are political.


AI가 가져올 변화에 우리 사회가 얼마나 잘 적응할 수 있는지를 결정하는 가장 중요한 결정은 기술적 인 것이 아닙니다. 그것은 정치적인 것입니다.



Everything that we have learned about AI suggests that the future is bright. We will get new and better services and increased productivity will lead to positive overall outcomes - but only on the condition that we carefully consider the societal implications and ensure that the power of AI is used for the common good.



AI에 관해 우리가 배운 모든 것은 미래가 밝다는 것을 알려 줍니다. 우리는 새롭고 더 나은 서비스를 얻게 될 것이며 생산성이 향상되면 전반적인 결과가 긍정적이 될 것입니다. 그러나 우리가 사회에 미치는 영향을 신중하게 고려하고 AI의 힘이 공동선에 사용되도록 보장해야만합니다.






What we need to do to ensure a positive outcome


Still, we have a lot of work to do.

우리는 아직 해야 될 일들이 많이 있습니다.


  • We need to avoid algorithmic bias to be able to reduce discrimination instead of increasing it.
  • We also need to learn to be critical about what we see, as seeing is no longer the same as believing - and develop AI methods that help us detect fraud rather than just making it easier to fabricate more real-looking falsehoods.
  • We need to set up regulation to guarantee that people have the right to privacy, and that any violations of this right are strictly penalized.
- algorithmic bias를 피해 차별을 늘리지 않고 줄일 수 있도록 노력해야 합니다. 
- 우리는 우리가 무엇을 보고 있는지에 대해 좀 더 비판적이 될 수 있게 노력하는 것이 필요합니다. 보이는 것 그대로 믿을 수 있지 않습니다. 거짓을 그럴듯 하게 진짜로 보이도록 하는 것 보다 거짓을 탐지하는데 도움이 되는 AI methods를 개발해야 합니다. 
- 우리는 사람들이 사생활 침해에 대한 권리를 갖도록 보장하고 이 권리 침해에 대해 엄격하게 처벌해야한다는 규정을 마련해야합니다.


We also need to find new ways to share the benefits to everyone, instead of creating an AI elite, those who can afford the latest AI technology and use it to access unprecedented economic inequality. This requires careful political judgment. (Note that by political judgment, we mean decisions about policy, which has little to do with who votes for whom in an election or the comings and goings of individual politicians and political parties.)


우리는 모두에게 인공지능을 통한 발전의 혜택을 공유할 수 있는 새로운 방법을 찾을 필요가 있습니다. 최신 인공 지능 기술을 사용할 수 있고 전례없는 경제적 불평등을 만들어 나갈 AI 엘리트를 만들어 내는 대신에 말이죠. 이를 위해서는 신중한 정치적 판단이 필요합니다. (정치적 판단이란 선거에서 누구에게 투표했는지 혹은 어떤 정치인이나 정당이 출현해야 되는지와 관련된 것이 아니라 정책 결정을 의미하는 겁니다.)



Note

The importance of policy

The most important decisions that determine how well our society can adapt to the evolution of work and to the changes brought by AI aren’t technological. They are political.


우리 사회가 인공지능이 불러올 일의 진화나 변화에 어떻게 잘 적응해 나갈것인지와 관련해 가장 중요한 것은 기술적인 측면이 아니라 정치적인 문제 입니다. 

The regulation of the use of AI must follow democratic principles, and everyone must have an equal say about what kind of a society we want to live in in the future. The only way to make this possible is to make knowledge about technology freely available to all. Obviously there will always be experts in any given topic, who know more about it than the rest of us, but we should at least have the possibility to critically evaluate what they are saying.


인공 지능의 사용에 대한 규제는 민주주의 원칙을 따라야하며 모든 사람들이 앞으로 어떤 종류의 사회에 살기를 바라는 가에 대한 의견을 평등하게 담아야 합니다. 이를 가능하게 하는 유일한 방법은 기술에 대한 지식을 모든 사람이 자유롭게 이용할 수 있게하는 것입니다. 분명히 주어진 주제에 대한 전문가가 있을 것이며 그들은 우리보다 더 많이 알고있을 것입니다. 하지만 우리는 적어도 그들이 말하는 것을 비판적으로 평가할 수있는 가능성(능력)이 있어야합니다.



What you have learned with us supports this goal by providing you the basic background about AI so that we can have a rational discussion about AI and its implications.


우리와 함께 배운 것은 인공 지능에 대한 기본 배경을 제공함으로써 우리가 인공지능과 그 의미에 대해 합리적으로 토론할 수 있도록 돕기 위해서 입니다.




Our role as individuals


As you recall, we started this course by motivating the study of AI by discussing prominent AI applications that affect all our lives. We highlighted three examples: self-driving cars, recommendation systems, and image and video processing. During the course, we have also discussed a wide range of other applications that contribute to the current technological transition.


여러분이 공부한 것들은, 우리 삶 전체에 영향을 미치는 중요한 AI applications를 논의함으로써 AI 연구에 동기를 부여하기 위해 이 코스를 시작했습니다. 우리는 세 가지 예를 살펴 보았습니다 :자율 주행 차량, 추천 시스템, 이미지 및 비디오 프로세싱. 그 과정에서 우리는 현재의 기술 전환에 기여하는 다양한 응용 프로그램에 대해서도 논의했습니다.


Note

Hidden agenda

We also had a hidden agenda. We wanted to give you an opportunity to experience the thrill of learning, and the joy of heureka moments when something that may have been complicated and mysterious, becomes simple and if not self-evident, at least comprehensible. These are moments when our curiosity is satisfied. But such satisfaction is temporary. Soon after we have found the answer to one question, we will ask the next. What then? And then?


우리에게는 숨겨진 의제도 있었습니다. 우리는 당신에게 학습의 스릴을 경험할 수 있는 기회를 드리고 싶었습니다. 그리고 복잡하고 미스테리한 어떤 문제를 단순화하고 뚜렷하게 알지는 못하더라도 적어도 이해는 할 수 있는 그런 heureka moments의 즐거움을 드리고 싶었습니다. 그것들은 바로 호기심이 만족되는 순간일 겁니다. 그러나 그러한 만족은 일시적입니다. 한 가지 질문에 대한 답을 얻은 후에 우리는 그 다음 질문을 할 것입니다.

If we have been successful, we have whetted your appetite for learning. We hope you will continue your learning by finding other courses and further information about AI, as well as other topics of your interest. To help you with your exploration, we have collected some pointers to AI material that we have found useful and interesting.


우리가 성공을 했다면, 당신은 더 배우고 싶은 마음이 들었을 겁니다. 우리는 당신이 인공지능에 대한 다른 과목 (코스)나 더 진전된 정보를 찾는 배움의 과정을 계속 이어 나가기를 바랍니다. 여러분의 탐험을 돕기 위해 우리는 유용하고 흥미로운 AI 자료에 대한 몇 가지 pointer들을 수집했습니다.



Now you are in a position where you can find out about what is going on in AI, and what is being done to ensure its proper use. You should do so, and whenever you feel like there are risks we should discuss, or opportunities we should go after, don't wait that someone else reacts


이제 AI에서 무슨 일이 일어나고 있는지, 올바른 사용을 위해 무엇이 이루어지고 있는지 알게 되었습니다. 여러분은 그렇게해야 합니다, 그리고 언제든지 리스크가 있다고 느껴지면 그것에 대해 논의해야 합니다. 그리고 더 발전할 기회가 있다고 생각할 때마다 다른 사람이 어떻게 반응하는지 기다리지 말고 앞으로 나아가고 논의해 나가야 합니다.



아마존 AWS DeepLens는 Deep learning을 배울 수 있는 개발자용 비디오 카메라 입니다.
2018년 6월부터 판매하고 있습니다. 구매를 원하시면 위 이미지 링크를 클릭하세요.





Exercise 26: AI in your life


How do you see AI affecting you in the future, both at work and in everyday life? Include both the positive and possible negative implications.


AI가 직장과 일상 생활에서 미래에 어떻게 영향을 미치는가? 가능한 긍정적 , 부정적 영향을 모두를 포함해 답하시오.



This is not the end. This is the beginning.



That's it for now. We thank you for joining us. This has been a great adventure for us, and we really hope that you enjoyed it too. We are not yet finished with the course, and I believe we will never be. We will keep doing our best updating and improving it, and making it the best AI MOOC in the world.


현재로서는 여기까지 입니다. 우리와 함께 해 주셔서 감사합니다.  이것은 우리에게 커다란 모험이었습니다. 우리는 당신이 이 과정을 즐겼기를 정말로 희망합니다. 우리는 아직 코스를 마친 것이 아니며, 결코 그렇게 될 수 없다고 생각합니다. 기 세계 최고의 AI MOOC로 만들 것입니다.


Like the course isn't finished, you shouldn't think that your exploration of AI is finished either. The progress is quite rapid and it may seem too much to keep track of, but the comforting news is that the basic principles have stayed more or less the same decade after decade. As long as you know the basics about problem-solving strategies, handling uncertainty, and learning from data, you should be able to easily put new things into perspective. This is why you had to draw diagrams with chickens crossing rivers, Towers of Hanoi, why you had to calculate the probability of rain in Helsinki, or detect detect happy faces by a neural network. Knowing the fundamentals, or the elements of AI, is much longer lasting knowledge than learning the technical details of a particular AI solution.


과정이 끝나지 않은 것처럼, AI 탐구가 끝났다고 생각하지 않아야합니다. 진행 상황이 매우 빠르며 추적하기에는 너무 많은 것처럼 보일 수 있지만 여러분에게 들려드릴 좋은 소식은 인공지능의 기본 원칙이 10 년 이 지나는 동안에도 거의 동일하게 유지되었다는 것입니다. 문제 해결 전략, 불확실성 처리 및 데이터 학습에 대한 기본 사항을 알고있는 한 새로운 관점을 쉽게 파악할 수 있게 됩니다. 그래서 하노이의 Towers of Hanoi, 헬싱키에서 비가 올 확률 계산, 신경망으로 행복한 얼굴을 탐지하기 등의 공부를 한 이유가 그것입니다. 


Below we give a few pointers that we have found useful. Keep learning, stay curious.

아래에서는 유용하다고 생각되는 몇 가지 지침을 제공합니다. 계속 배우고 항상 호기심을 가지세요.


"The future has not been written. There is no fate but what we make for ourselves." (John Connor)


"미래는 기록되지 않았다. 정해진 운명이란 없다 우리가 스스로 만들어 나가는 것이다." (존 코너)




After completing Chapter 6 you should be able to:



  • Understand the difficulty in predicting the future and be able to better evaluate the claims made about AI
  • Identify some of the major societal implications of AI including algorithmic bias, AI-generated content, privacy, and work







반응형