반응형
블로그 이미지
개발자로서 현장에서 일하면서 새로 접하는 기술들이나 알게된 정보 등을 정리하기 위한 블로그입니다. 운 좋게 미국에서 큰 회사들의 프로젝트에서 컬설턴트로 일하고 있어서 새로운 기술들을 접할 기회가 많이 있습니다. 미국의 IT 프로젝트에서 사용되는 툴들에 대해 많은 분들과 정보를 공유하고 싶습니다.
솔웅

최근에 올라온 글

최근에 달린 댓글

최근에 받은 트랙백

글 보관함

카테고리


반응형

오늘은 Hierarchical Agent Architecture 마지막 시간 입니다.

 

지금까지 만들어 놓은 도구들과 Agent들, 함수들 그리고 LangGraph 에서 제공하는 모듈들로 레고 블럭 처럼 조립해서 만듭니다.

 

먼저 Document Team 을 만들고 지난 시간에 만들었던 Researching Team 과 합쳐서 더 큰 Supervisor Architecture 를 손쉽게 만듭니다.

 

전문성을 갖춘 Agent Team 을 많이 만들어 놓으면 각 프로젝트의 목적에 맞게 적당한 Agent Team 들을 Import 해서 프로젝트를 수행하도록 할 수도 있습니다.

 

1인 기업도 가능하시만 제 생각에는 현재 기업을 구성하고 있는 각 팀에서 일하는 사람들을 Support 하는 역할이 더 먼저 진행될 거라고 생각합니다.

 

그러면 팀의 인원을 많이 줄일 수 있을 겁니다.

 

인간의 역할은 Agent 팀이 일하는 과정과 결과를 감독하고 Confirm 하는 일이 주된 일이 되지 않을까 싶습니다.

 

오늘 영상 보시고 각자 AI 시대 일하는 환경 변화를 고민해 보시는 것도 좋을 것 같습니다.

 

https://youtu.be/9sH2HWVTZkg?si=5wINQ3iKwaIX1A9B

 



반응형


반응형

오늘은 Research Team 을 완료 합니다.

 

지금까지 만든 Tool들과 함수들 그리고 LangGraph 에서 제공하는 모듈들을 사용해서 레고 블럭처럼 간단하게 Agent들을 만들고 Supervisor Architecture 로 구성된 Team 을 만들 수 있습니다.

 

Sub Supervisor Architecture 도 하나의 완성된 Supervisor Architecture 입니다.

그렇기 때문에 이 Sub Supervisor Architecture 인 Research Team 도 독립적으로 User 를 응대 할 수 있습니다.

 

미래의 구직은 사람이 하지 않을 겁니다.

 

내가 특정 Task 에 경쟁력 있는 AI Agent를 만들고 그 Agent를 취직 시키면 앉아서 돈을 버는 시대가 올겁니다.

 

이번 비디오에서 그 가능성을 확인해 보세요.

 

https://youtu.be/TC18Iqvaf8s?si=ELasdsPRho3NJ28b

 



반응형


반응형

오늘은 Agent들이 사용할 Tool들을 구현하는 마지막 시간입니다.

Document Authoring Team 이 사용할 Tool을 구현합니다.

문서 작업팀이니까 파일을 읽고 쓰고 수정하는 도구들을 만듭니다.

그리고 Chart Generator Agent를 위해 Python 코드를 실행할 도구도 만듭니다.

 

전체 그림을 그리고 처음 하는 일이 이런 Tool들을 구현하는 작업입니다.

그 다음은 특정 Agent와 필요한 Tool들을 짝지어서 Agent Node를 만드는 일입니다.

그리고 나서 Agent들을 Grouping 해서 Team을 구성합니다. 

이 때 Supervisor Architecture가 사용 됩니다.

 

이 팀들을 관리하는 Supervisor 를 구현하는 것이 그 다음 단계입니다.

이것도 Supervisor Architecture 입니다.

 

이렇게 Supervisor Architecture를 Multiple 하게 사용하는 곳아  Hierarchical Architecture 입니다.

 

오늘 가장 기본이 되는 Tool들을 구현하는 작업을 끝마치고 다음 시간부터 Agent들을 구현하겠습니다.

 

https://youtu.be/JTdh8pNY1PE?si=wrESnWDNexO2B7lz

 



반응형


반응형

오늘은 LangGraph의 Hierarchical Agent Teams Architecture 첫 시간입니다.

이 Tutorial 에서 다룰 소스코드의 전체 그림을 살펴 봅니다.

그리고 지금까지 공부한 것을 토대로 Agent Architecture를 구성하기 위한 절차들에 대해서도 정리 합니다.

오늘 디자인한 것을 토대로 다음 시간 부터는 코딩에 들어갑니다.

 

코딩을 시작하기 전 어떤 것들을 어떻게 설계해야 하는지 잘 배워 봅시다.

 

https://youtu.be/J5zl376A9qo?si=bTHY5JEkOCXVM5XF

 



 

 

반응형


반응형

오늘은 LangGraph Tutorial 중 Network Agent Architecture 소스코드를 집중 분석합니다.

이 Tutorial 의 소스코드가 얼마전 바뀌었는데요.
Old version New Version을 비교 분석하면서 이 소스코드가 Update된 이유를 알아 봅니다.

이를 통해 Network Architecture에 대해 좀 더 깊은 이해를 할 수 있을 겁니다.

그리고 create_react_agent() 메소드에 대해 자세히 설명 드리겠습니다.
이 메소드는 앞으로 Supervisor Architecture를 배울 때 중요하게 다뤄질 메소드 입니다.

비디오 마지막에는 한국의 혼란스러운 정치 상황을 외국에서 보면서 걱정이 되면서도 한국 젊은 이들의 모습을 보면서 안심 하게 되는 제 심정을 표현한 간단한 마무리 영상을 추가 했습니다.

멀리 외국에서도 민주주의를 지키기 위해 노력하는 한국 국민들과 함께 합니다.

https://youtu.be/yaJR0FkYkYU?si=XDfXEb8vD20edui-

 

 

 

반응형


반응형

오늘은 첫번째 Multi Agent Architecture인 Network Architecture 소스 분석을 시작합니다.

 

이쪽 분야는 아주 변화 무쌍한 곳이라 LangGraph Tutorial 을 보니까 1주일 전에 공부한 소스코드가 어느새 바뀌어 있네요.

 

오늘은 Old Source Code 를 중심으로 공부하면서 처음 만들어 보는 Agent 에 대해 자세히 살펴 보겠습니다.

 

오늘 비디오에서는 Agent 가 어떻게 생겼는지 보는 것 만으로 의미가 있는 것 같습니다.

 

제가 정의하는 Agent 모양은 Prompt로 역할을 부여하고 tool이 필요한 경우 사용할 tool을 장착 시켜 준 object 입니다.

 

여러분도 보시고 나름대로 Agent 는 어떻게 설명할 수 있는지 생각해 보세요.

 

https://youtu.be/TNAXWwMu5Ew?si=GWR_BhjPdAT9_8Wl

 



반응형
이전 1 다음