반응형
블로그 이미지
개발자로서 현장에서 일하면서 새로 접하는 기술들이나 알게된 정보 등을 정리하기 위한 블로그입니다. 운 좋게 미국에서 큰 회사들의 프로젝트에서 컬설턴트로 일하고 있어서 새로운 기술들을 접할 기회가 많이 있습니다. 미국의 IT 프로젝트에서 사용되는 툴들에 대해 많은 분들과 정보를 공유하고 싶습니다.
솔웅

최근에 올라온 글

최근에 달린 댓글

최근에 받은 트랙백

글 보관함

카테고리


반응형
OpenAI Assistants API 의 Function Calling에 대해 배웁니다.
직접 코딩해서 Tool을 만들어야 하고 Schema 도 제작해야 합니다.
쉽지 않은 작업입니다.
Function Calling을 배울 수 있는 좋은 자료를 찾았습니다.
자세하고 소스코드 설명도 하고 제가 수정한 소스코드도 공개 합니다.
OpenAI Assistants API의 Function Calling을 배우는데 도움이 되길 바랍니다.
Assistants API의 Function Calling을 사용하면 ChatGPT 를 비지니스에 활용할 수 있을 정도의 정확도를 제공 하는 성능으로 업그레이드 할 수 있습니다.
현재 AI Application 개발의 트렌드는 Multi Agent , Agentic Workflow로 어플리케이션에 Agent 들을 두고 각 에이전트 들은 다수의 툴들을 가지고 작업하는 바익으로 발전하고 있습니다.
이는 사용자의 질문에 한번의 답을 하는 것이 아니라 그 질문을 마치 하나의 미션으로 두고 여러 Agent가 다양한 툴을 사용해 그 미션을 달성해 사용자의 요구조건을 더 짧은 시간에 더 충실히 채워주는 방식으로 변화하고 있습니다.
OpenAI 의 Assistants API는 이런 Agents 개념을 도입한 서비스 입니다.
지금은 베타버전이지만 앞으로 ChatGPT라는 기본 AI 모델의 성능향상도 중요하지만 점차 이런 Agent 활용 방법의 중요성이 대두되고 있기 때문에 이 Assistants API 도 많이 보강 될 것이라 믿습니다.
미래 기술을 초기부터 따라 잡아서 배우면 Expert이 될 수 있습니다.
이해하고 구현하기 어려운 Function Calling 을 쉽게 배울 수 있는 소스코드를 구해서 심층 분석했습니다.
많은 도움이 되길 바랍니다.

 

https://youtu.be/QEf5FR0DiHk?si=TECvJ_RslHzm9fVl

 

반응형


반응형

작년 11월에 소개 된 Assistants API 입니다.
조용하게 진행 되지만 아주 중요한 프로젝트 입니다.

OpenAI에서 RAG 개념을 받아들인 최초의 API 예요.
Assistants는 LangChain의 Agent 역할을 하죠.
덕분에 우리도 ChatGPT에서 RAG 기능을 사용할 수 있게 됐습니다.
논문을 업로드해서 요약을 한다던지 현재 날씨 정보를 얻는다던지 하는 그런 서비스는 원래 ChatGPT는 못했었거든요.

LangChain은 LangGraph로 Agent 를 한껏 발전 시켰습니다.
OpenAI는 이 Assistants API를 어떤 방향으로 발전 시킬지...

아직 아무도 가지 않은 길을 가는 AI 세계는 정말 흥미롭습니다.

https://youtu.be/L5GjCjX9Yj8?si=IU0W1RAOrUzIguHF

 

https://catchuplangchain.streamlit.app/

 

Catchup LangChain Tutorial

This app was built in Streamlit! Check it out and visit https://streamlit.io for more awesome community apps. 🎈

catchuplangchain.streamlit.app

반응형
이전 1 다음