반응형
블로그 이미지
개발자로서 현장에서 일하면서 새로 접하는 기술들이나 알게된 정보 등을 정리하기 위한 블로그입니다. 운 좋게 미국에서 큰 회사들의 프로젝트에서 컬설턴트로 일하고 있어서 새로운 기술들을 접할 기회가 많이 있습니다. 미국의 IT 프로젝트에서 사용되는 툴들에 대해 많은 분들과 정보를 공유하고 싶습니다.
솔웅

최근에 올라온 글

최근에 달린 댓글

최근에 받은 트랙백

글 보관함

카테고리


반응형


AI 시대를 어떻게 맞이 해야 할지 궁금하시죠?

어플리케이션을 개발하는 사람들도 어떻게 AI 를 사용해서 프로그래밍을 할지 무지 열심히 연구하고 있습니다.

개발자 분들이 공부하면서 깨달아 가는 것이..... 결국은 소통입니다.

AI를 잘 이용하려면 AI와 잘 소통하는 방법을 개발해야 하는 것이라는 겁니다.

그래서 나온 얘기가 Prompting 입니다. 

이는 단지 프로그래머에게만 요구 되는 것은 아닙니다.

AI를 잘 사용하고 싶은 사람 누구에게나 필요합니다.

컴퓨터를 잘 알아서 앱을 개발하는 사람들은 AI와  잘 소통하는 방법을 어떻게 찾았는지 보면 힌트를 좀 얻을 수 있지 않을까요?

이 비디오를 보시면 분명 도움이 되실 겁니다. (프로그래밍에 대해 얘기 하지만 코딩은 하나도 없습니다.)

===========================================


기존 Traditional Programming 에서는 로직이 있었습니다.
로직만으로는 부족합니다.


AI Agent Programming에서는 거기에 더해서 Prompt들과 이 이 Prompt들을 다루는 로직이 중요합니다.


새로운 코딩의 요구 조건.
AI와 소통하는 법을 프로그래밍으로 어떻게 구현할것인가가 핵심입니다.


이 Prompt를 지배하는 길이 AI Agent 프로그래밍 마스터로 가는 길 입니다.


이번 시간에는 Plan & Execute 튜토리얼에서 관리되는 Prompt 들과 그 흐름을 자세히 살펴 보겠습니다.


이 흐름을 이해하고 난 후 LangGraph 에서 제공하는 Plan & Execute 소스코드를 보면 이 Prompting을 다루는 로직을 이해하는데 많은 도움이 될 겁니다.

 

https://youtu.be/sbC64Cx5flQ?si=2yv0eAzZnQuUw9rn

 

 

반응형


반응형

오늘은 지난 시간에 설명했던 어플리케이션의 UI 쪽 소스코드를 심층 분석합니다.

이 어플리케이션은 Frontend tool 로 Streamlit 을 사용합니다.

이 Streamlit 으로 Web Application의 UI 를 어떻게 구성하고 여러 condition들에 따라 처리하는 로직은 어떻게 만드는지 알아봅니다.

 

그리고 함수끼리 데이터를 주고 받을 때 Session State 을 사용하는 방법과 Function Call 할 때 Parameter 로 전달하는 방법을 비교 분석합니다.

 

두 방법의 장점과 단점을 알아보고 각각 어떤 경우 사용하는게 더 좋을지 공부해 봅니다.

 

https://youtu.be/RFmJLUONv2g?si=aX53j3PHN8-Z9WtY

 



반응형


반응형

요즘 외국에서 생활하면서 듣는 고국으로부터 들려오는 뉴스들은 많이 우울하네요.

가슴이 아프기도 하고 이대로 무너지지 말고 다시 예전 처럼 경제적으로나 정치적으로나 모범적인 나라로 되돌아가기를 바랍니다.

 

한편으로는 모국이 잘 되기를 바라는 마음에 국뽕 장착이 되기도 하네요.

 

저는 AI Agent 를 공부하면서 이 기술이 미래를 바꿀 것이라고 더더욱 확신하게 되었고 그 미래를 주도하는 사람들 중에 Korean이 포함 되기를 바랍니다.

 

오늘은 LangGraph의 Multi-Agent Systems 공부 한 것을 응용해서 만든 저의 AI Web Application을 소개 합니다.

공부하면서 생각했던 AI Agent Platform Application 아이디어도 함께 공유합니다.

이번 어플리케이션은 공부하면서 구상했던 이 AI Agent Platform 들 중 하나에 대한 POC를 만든다는 생각으로 개발했습니다.

 

AI Agent 시대에는 일자리를 구하거나 사업을 하는 모습들이 완전히 달라 질 겁니다.

 

돈 버는 방법이 지금과는 완전히 달라진다는 얘기 입니다.

 

AI Agent를 공부하면서 이것으로 개발할 수 있는 어플리케이션을 생각하다 보니 자연스럽게 미래의 일하는 방법과 사업을 하는 방법이 그려지게 됐습니다.

그렇게 미래의 변화된 돈 버는 모습을 그려 보게 됐습니다.

 

오늘은 Study를 위해 개발한 이 어플리케이션 소개와 더불어 AI Agent 시대에 달라질 Business 모습에 대한 저의 Idea도 공유하겠습니다.

 

AI Modeling 분야에서는 한국이 뒤쳐졌지만, 이제 시작하는 AI Agent 시대는 한국이 선도하도록 여러 분야에서 힘 써 주셨으면 좋겠습니다.

 

저도 작은 힘이나마 보태고 싶구요.

 

마이크로소프트, 구글 은  인도 이민자가 이끌고 있고,

테슬라는 남아공 출신인 머스크가 만들었고

NVIDIA 도 대만 출신 이민자가 창업하고 경영을 하고 있습니다.

 

다가오는 AI Agent 시대는 Korean에서 이와 같은 Top  Level 기업을 만들고 운영하는 인재가 나오기를 바랍니다.

 

여러분들의 생각도 share 해 주세요.

 

제가 공부를 위해서 만든 Application의 소스코드들은 모두 공개 됩니다.

오늘 비디오에서 사용된 어플리케이션의 소스코드도 공개 됩니다.

 

 

https://youtu.be/CLuBhQKAdzo?si=f-Ciip9WZrVquCyT

 

 

반응형


반응형

오늘은 AI Agent가 무엇인지 아주 쉽고 간단하게 설명해 주는 비디오가 있어서 소개해 드리려고 합니다.

 

ToolFlow AI 의 CEO인 Alfie Marsh 가 AI Agent 가 AI 와는 어떻게 다른지 그리고 어디에 어떻게 활용할 수 있는지 쉽고 자세하고 설명해 드립니다.

 

이 자료는 AI Camp 에서 진행 한 5 Day Challenge for Agentic AI 라는 Study Group 에서 AI Agent를 이해할 수 있는 자료로 추천된 영상입니다.

 

제가 이 영상을 좀 더 이해하기 쉽도록 한국어로 자막을 달았습니다.

 

https://youtu.be/40fB4UGJZM4?si=ArOgh2LiW8wIQR88

 

 

원본은 아래로 가시면 보실 수 있습니다.

https://youtu.be/hLJTcVHW8_I?si=SpUlPyfRa3edXtFh

 

 

작년에 제가 올린 IBM 에서 제작한 AI Agent에 대해 설명한 이 영상도 보시면 AI Agent를 이해하는데 더 도움이 되실 겁니다.

 

https://youtu.be/F8NKVhkZZWI?si=-dMYAf2-B_hcRUXe

 

 

그리고 이 AI Agent를 좀 더 잘 활용하기 위한 아이디어와 실험 결과 등을 이야기 하는 Andrew Ng 교수의 Agentic Workflow 관련 영상을 보시면 훨씬 이해의 폭이 넓어 지실 겁니다.

 

https://youtu.be/8b7CLBCS3pg?si=DNuvGrdvfctkuOpV

 




반응형


반응형

Hello everyone!

 

Today, I’m excited to share a case study presented by the AI Tribe team during the 5-Day Challenge for Agentic AI Study Group, held by AICamp from January 1st to January 5th.

 

This team developed an application that leverages AI agents to efficiently manage business cards and LinkedIn connections collected through various networking activities.

 

The Google Slides and source code used in their presentation are publicly available. You can find all the related information in the description of this video.

 

AICamp hosts many free study groups, hackathons, and various AI-related events.

It has local communities in 15 countries and over 50 cities. Although there isn’t one in Korea yet, you can freely participate in their online events.

 

Living here in Seattle, I actively participate in these AI-related events to learn and network. I’ll continue to share valuable information I’ve gained from these experiences to help you in your AI journey.

 

I hope this video provides insights into the latest AI trends in the U.S., especially for those in Korea. If you find this content helpful, please don’t forget to like and subscribe to my channel.

 

Let’s dive into today’s exciting presentation!

 

—---------------------------------------------------

 

안녕하세요, 여러분!

 

오늘은 제가 1월 1일부터 5일까지 AICamp에서 진행한 5-Day Challenge for Agentic AI Study Group에서 AI Tribe 팀이 발표한 사례를 공유하려고 합니다.

 

이 팀은 네트워킹 활동 중 받은 명함과 LinkedIn 정보를 AI 에이전트를 활용해 효율적으로 관리할 수 있는 애플리케이션을 개발했습니다.

 

이들이 발표에서 사용한 Google Slide와 소스 코드는 모두 공개되어 있습니다. 관련 정보는 이 비디오의 설명란에 공유하겠습니다.

 

AICamp는 무료 스터디 그룹, 해커톤, 그리고 다양한 AI 관련 행사를 개최하는 플랫폼입니다.

현재 15개국 50개 도시에 로컬 커뮤니티가 있으며, 한국에는 아직 없지만 온라인 행사는 누구나 자유롭게 참여하실 수 있습니다.

 

저는 시애틀에 살면서 이런 AI 관련 행사에 참여하며 공부도 하고, 네트워킹도 하고 있습니다.

이 과정에서 얻은 유익한 정보를 계속해서 여러분과 공유하려고 합니다.

 

특히 한국에 계신 분들이 미국의 최신 AI 트렌드를 이해하는 데 조금이라도 도움이 되길 바랍니다.

영상이 유익하셨다면 좋아요와 구독 부탁드립니다!

 

그럼, 오늘의 발표로 들어가 보겠습니다!

 

https://youtu.be/4m88fXD0uJ4?si=SXbG9uN7HFvy2RD-

 

 

AI Tribe가 개발한 소스코드와 발표 자료는 아래에 있습니다.

 

AI Tribe's Networking AI Agent

 

GitHub : https://github.com/mcallec1/event_networking

 

GitHub - mcallec1/event_networking

Contribute to mcallec1/event_networking development by creating an account on GitHub.

github.com

 

Slides :  https://docs.google.com/presentation/d/1XvWvd9mSJCiwCS2sC_R_zFqfXFq0eQ1EbalfyO_Uw2k/edit?usp=sharing

 

AI Tribe Networking Agent

1 Networking Agent AI Tribe

docs.google.com

 

 

반응형


반응형

오늘은 Hierarchical Agent Architecture 마지막 시간 입니다.

 

지금까지 만들어 놓은 도구들과 Agent들, 함수들 그리고 LangGraph 에서 제공하는 모듈들로 레고 블럭 처럼 조립해서 만듭니다.

 

먼저 Document Team 을 만들고 지난 시간에 만들었던 Researching Team 과 합쳐서 더 큰 Supervisor Architecture 를 손쉽게 만듭니다.

 

전문성을 갖춘 Agent Team 을 많이 만들어 놓으면 각 프로젝트의 목적에 맞게 적당한 Agent Team 들을 Import 해서 프로젝트를 수행하도록 할 수도 있습니다.

 

1인 기업도 가능하시만 제 생각에는 현재 기업을 구성하고 있는 각 팀에서 일하는 사람들을 Support 하는 역할이 더 먼저 진행될 거라고 생각합니다.

 

그러면 팀의 인원을 많이 줄일 수 있을 겁니다.

 

인간의 역할은 Agent 팀이 일하는 과정과 결과를 감독하고 Confirm 하는 일이 주된 일이 되지 않을까 싶습니다.

 

오늘 영상 보시고 각자 AI 시대 일하는 환경 변화를 고민해 보시는 것도 좋을 것 같습니다.

 

https://youtu.be/9sH2HWVTZkg?si=5wINQ3iKwaIX1A9B

 



반응형


반응형

오늘은 Research Team 을 완료 합니다.

 

지금까지 만든 Tool들과 함수들 그리고 LangGraph 에서 제공하는 모듈들을 사용해서 레고 블럭처럼 간단하게 Agent들을 만들고 Supervisor Architecture 로 구성된 Team 을 만들 수 있습니다.

 

Sub Supervisor Architecture 도 하나의 완성된 Supervisor Architecture 입니다.

그렇기 때문에 이 Sub Supervisor Architecture 인 Research Team 도 독립적으로 User 를 응대 할 수 있습니다.

 

미래의 구직은 사람이 하지 않을 겁니다.

 

내가 특정 Task 에 경쟁력 있는 AI Agent를 만들고 그 Agent를 취직 시키면 앉아서 돈을 버는 시대가 올겁니다.

 

이번 비디오에서 그 가능성을 확인해 보세요.

 

https://youtu.be/TC18Iqvaf8s?si=ELasdsPRho3NJ28b

 



반응형


반응형

자 이제 Agent 생성하기 위한 마지막 준비 단계입니다.

 

Hierarchical Architecture  는 Supervisor Architecture 를 여러개 모아 놓은 구조 입니다.

 

즉 Supervisor Architecture 를 여러개 만들어야 한다는 겁니다.

 

Factory Design Pattern을 사용해서 쉽게 Supervisor Architecture를 구현하도록 하는 함수를 만듭니다.

그러면 나중에 다른 팀을 추가하는 작업도 간편하게 할 수 있습니다.

 

코드의 유지 보수도 쉽게 해 주고 확장성도 높여 줍니다.

 

오늘은 이 Factory Design Pattern을 사용해서 Supervisor Architecture를 쉽게 생성하도록 만드는 함수를 공부해 보겠습니다.

 

그리고 Python 3.11 이상에서만 지원되는 * unpacking 을 3.10 이하 버전에서 unpacking 할 인자들이 가변적일 때 어떻게 처리해야 하는지도 살펴 봅니다.

 

https://youtu.be/Ft8lK2G5IFs?si=UnmG7BsBrR-aMkqI

 



반응형


반응형

오늘은 Agent들이 사용할 Tool들을 구현하는 마지막 시간입니다.

Document Authoring Team 이 사용할 Tool을 구현합니다.

문서 작업팀이니까 파일을 읽고 쓰고 수정하는 도구들을 만듭니다.

그리고 Chart Generator Agent를 위해 Python 코드를 실행할 도구도 만듭니다.

 

전체 그림을 그리고 처음 하는 일이 이런 Tool들을 구현하는 작업입니다.

그 다음은 특정 Agent와 필요한 Tool들을 짝지어서 Agent Node를 만드는 일입니다.

그리고 나서 Agent들을 Grouping 해서 Team을 구성합니다. 

이 때 Supervisor Architecture가 사용 됩니다.

 

이 팀들을 관리하는 Supervisor 를 구현하는 것이 그 다음 단계입니다.

이것도 Supervisor Architecture 입니다.

 

이렇게 Supervisor Architecture를 Multiple 하게 사용하는 곳아  Hierarchical Architecture 입니다.

 

오늘 가장 기본이 되는 Tool들을 구현하는 작업을 끝마치고 다음 시간부터 Agent들을 구현하겠습니다.

 

https://youtu.be/JTdh8pNY1PE?si=wrESnWDNexO2B7lz

 



반응형


반응형

오늘은 LangGraph의 Hierarchical Agent Teams Architecture 두번째 시간입니다.

 

지난 시간에 이 Tutorial 에서 제공되는 소스코드의 Agent Architecture 전체 그림을 분석했습니다.

 

필요한 Team과 각 팀마다 필요한 Agent들을 정했구요.

 

일을 시키려면 그 일에 맞는 적당한 도구를 주어 줘야 합니다.

 

오늘은 각 Agent의 역할에 맞는 도구를 구현하는 방법을 배워 보겠습니다.

 

먼저 Research Team 에 있는 Searcher Agent와 Web Scraper Agent 에게 각각 어떤 Tool들을 제공할지 그리고 그 Tool들은 어떻게 구현하는지 자세히 공부하겠습니다.

 

https://youtu.be/I4SID3VPUi0?si=QcmZvwe7mFa990_J

 



반응형
이전 1 2 다음