반응형
블로그 이미지
개발자로서 현장에서 일하면서 새로 접하는 기술들이나 알게된 정보 등을 정리하기 위한 블로그입니다. 운 좋게 미국에서 큰 회사들의 프로젝트에서 컬설턴트로 일하고 있어서 새로운 기술들을 접할 기회가 많이 있습니다. 미국의 IT 프로젝트에서 사용되는 툴들에 대해 많은 분들과 정보를 공유하고 싶습니다.
솔웅

최근에 올라온 글

최근에 달린 댓글

최근에 받은 트랙백

글 보관함

카테고리


반응형

오늘은 Hierarchical Agent Architecture 마지막 시간 입니다.

 

지금까지 만들어 놓은 도구들과 Agent들, 함수들 그리고 LangGraph 에서 제공하는 모듈들로 레고 블럭 처럼 조립해서 만듭니다.

 

먼저 Document Team 을 만들고 지난 시간에 만들었던 Researching Team 과 합쳐서 더 큰 Supervisor Architecture 를 손쉽게 만듭니다.

 

전문성을 갖춘 Agent Team 을 많이 만들어 놓으면 각 프로젝트의 목적에 맞게 적당한 Agent Team 들을 Import 해서 프로젝트를 수행하도록 할 수도 있습니다.

 

1인 기업도 가능하시만 제 생각에는 현재 기업을 구성하고 있는 각 팀에서 일하는 사람들을 Support 하는 역할이 더 먼저 진행될 거라고 생각합니다.

 

그러면 팀의 인원을 많이 줄일 수 있을 겁니다.

 

인간의 역할은 Agent 팀이 일하는 과정과 결과를 감독하고 Confirm 하는 일이 주된 일이 되지 않을까 싶습니다.

 

오늘 영상 보시고 각자 AI 시대 일하는 환경 변화를 고민해 보시는 것도 좋을 것 같습니다.

 

https://youtu.be/9sH2HWVTZkg?si=5wINQ3iKwaIX1A9B

 



반응형


반응형

오늘은 Research Team 을 완료 합니다.

 

지금까지 만든 Tool들과 함수들 그리고 LangGraph 에서 제공하는 모듈들을 사용해서 레고 블럭처럼 간단하게 Agent들을 만들고 Supervisor Architecture 로 구성된 Team 을 만들 수 있습니다.

 

Sub Supervisor Architecture 도 하나의 완성된 Supervisor Architecture 입니다.

그렇기 때문에 이 Sub Supervisor Architecture 인 Research Team 도 독립적으로 User 를 응대 할 수 있습니다.

 

미래의 구직은 사람이 하지 않을 겁니다.

 

내가 특정 Task 에 경쟁력 있는 AI Agent를 만들고 그 Agent를 취직 시키면 앉아서 돈을 버는 시대가 올겁니다.

 

이번 비디오에서 그 가능성을 확인해 보세요.

 

https://youtu.be/TC18Iqvaf8s?si=ELasdsPRho3NJ28b

 



반응형


반응형

자 이제 Agent 생성하기 위한 마지막 준비 단계입니다.

 

Hierarchical Architecture  는 Supervisor Architecture 를 여러개 모아 놓은 구조 입니다.

 

즉 Supervisor Architecture 를 여러개 만들어야 한다는 겁니다.

 

Factory Design Pattern을 사용해서 쉽게 Supervisor Architecture를 구현하도록 하는 함수를 만듭니다.

그러면 나중에 다른 팀을 추가하는 작업도 간편하게 할 수 있습니다.

 

코드의 유지 보수도 쉽게 해 주고 확장성도 높여 줍니다.

 

오늘은 이 Factory Design Pattern을 사용해서 Supervisor Architecture를 쉽게 생성하도록 만드는 함수를 공부해 보겠습니다.

 

그리고 Python 3.11 이상에서만 지원되는 * unpacking 을 3.10 이하 버전에서 unpacking 할 인자들이 가변적일 때 어떻게 처리해야 하는지도 살펴 봅니다.

 

https://youtu.be/Ft8lK2G5IFs?si=UnmG7BsBrR-aMkqI

 



반응형


반응형

오늘은 Agent들이 사용할 Tool들을 구현하는 마지막 시간입니다.

Document Authoring Team 이 사용할 Tool을 구현합니다.

문서 작업팀이니까 파일을 읽고 쓰고 수정하는 도구들을 만듭니다.

그리고 Chart Generator Agent를 위해 Python 코드를 실행할 도구도 만듭니다.

 

전체 그림을 그리고 처음 하는 일이 이런 Tool들을 구현하는 작업입니다.

그 다음은 특정 Agent와 필요한 Tool들을 짝지어서 Agent Node를 만드는 일입니다.

그리고 나서 Agent들을 Grouping 해서 Team을 구성합니다. 

이 때 Supervisor Architecture가 사용 됩니다.

 

이 팀들을 관리하는 Supervisor 를 구현하는 것이 그 다음 단계입니다.

이것도 Supervisor Architecture 입니다.

 

이렇게 Supervisor Architecture를 Multiple 하게 사용하는 곳아  Hierarchical Architecture 입니다.

 

오늘 가장 기본이 되는 Tool들을 구현하는 작업을 끝마치고 다음 시간부터 Agent들을 구현하겠습니다.

 

https://youtu.be/JTdh8pNY1PE?si=wrESnWDNexO2B7lz

 



반응형


반응형

오늘은 LangGraph의 Hierarchical Agent Teams Architecture 두번째 시간입니다.

 

지난 시간에 이 Tutorial 에서 제공되는 소스코드의 Agent Architecture 전체 그림을 분석했습니다.

 

필요한 Team과 각 팀마다 필요한 Agent들을 정했구요.

 

일을 시키려면 그 일에 맞는 적당한 도구를 주어 줘야 합니다.

 

오늘은 각 Agent의 역할에 맞는 도구를 구현하는 방법을 배워 보겠습니다.

 

먼저 Research Team 에 있는 Searcher Agent와 Web Scraper Agent 에게 각각 어떤 Tool들을 제공할지 그리고 그 Tool들은 어떻게 구현하는지 자세히 공부하겠습니다.

 

https://youtu.be/I4SID3VPUi0?si=QcmZvwe7mFa990_J

 



반응형


반응형

오늘은 LangGraph의 Hierarchical Agent Teams Architecture 첫 시간입니다.

이 Tutorial 에서 다룰 소스코드의 전체 그림을 살펴 봅니다.

그리고 지금까지 공부한 것을 토대로 Agent Architecture를 구성하기 위한 절차들에 대해서도 정리 합니다.

오늘 디자인한 것을 토대로 다음 시간 부터는 코딩에 들어갑니다.

 

코딩을 시작하기 전 어떤 것들을 어떻게 설계해야 하는지 잘 배워 봅시다.

 

https://youtu.be/J5zl376A9qo?si=bTHY5JEkOCXVM5XF

 



 

 

반응형
이전 1 다음