반응형
블로그 이미지
개발자로서 현장에서 일하면서 새로 접하는 기술들이나 알게된 정보 등을 정리하기 위한 블로그입니다. 운 좋게 미국에서 큰 회사들의 프로젝트에서 컬설턴트로 일하고 있어서 새로운 기술들을 접할 기회가 많이 있습니다. 미국의 IT 프로젝트에서 사용되는 툴들에 대해 많은 분들과 정보를 공유하고 싶습니다.
솔웅

최근에 올라온 글

최근에 달린 댓글

최근에 받은 트랙백

글 보관함

카테고리


반응형

오늘은 AI Agentic Workflow 가 아직 실제 Business 에서 활발하게 활용되지 못하는 이유를 분석해 붑니다.

 

현재 하드웨어와 소프트웨어 적인 한계가 분명히 있습니다.

 

그 한계들은 무엇들인지 하나 하나 분석해 보겠습니다.

 

그리고 그것들은 언제 어떻게 극복될 수 있을지 알아보겠습니다.

 

이 기술이 실제 Business 에서 필요로 하는 때를 대비해서 나는 어떤 기술들을 배워야 할지에 대해서도 제가 생각하는 부분을 공유해 드리겠습니다.

 

저는 이런 분석과 전망을 가지고 이 AI Multi-Agentic Workflow 를 적용하는 기술들을 배우고 있습니다.

 

여러분들의 생각은 어떤지요?

 

같이 고민해 보면 좋겠습니다.


https://youtu.be/hRPariJe350?si=bKBu72eipPnwXXEI

 

 

반응형


반응형

LangGraph Tutorial 에 있는 소스코드들을 직접 실행해 보기 위해서 CoLab에 옮겨서 테스트를 해보면 Syntax Error 가 종종 뜹니다.

 

특히 * unpacking 을 사용할 때 그런데요.

 

이건 Python 버전 문제 때문입니다.

 

그 에러의 원인은 무엇이고 해결책은 무엇인지에 대해 알아보겠습니다.

 

그리고 Python 3.11 이상에서 지원되는 * unpacking은 무엇이고 사용법은 어떤지에 대해서도 배워 보겠습니다.

 

https://youtu.be/CclOgB1ZyVM?si=Q_Cz48h5naUd9Zqz 

 

 

반응형


반응형

이번 한국의 비상 계엄령 사태 때 순간의 선택을 잘 못 해서 내란범이 될 처지에 놓인 사람이 많이 생겼습니다.

 

이 때 판단을 도와주는 도구로서 AI Agent 가 사용되고 있었다면 어떻게 됐을까요?

 

AI 는 수많은 데이터와 그 관계 정보를 바탕으로 경계가 모호한 문제에 대해 빨리 판단하는 기능이 있습니다.

 

미래에는 이 AI 기능을 여러곳에서 사용하게 될 것입니다.

 

AI Engineer 로서 이런 AI Product 를 개발 할 때 그 AI Agent 성능에 대한 테스트와 평가의 과정을 거쳐야 됩니다.

 

AI Engineer는 어떤 기준으로 어떻게 평가 해야 할까요?

 

저는 AI 의 이러한 판단 기능 때문에 AI Engineer 들은 인문학에 대한 교양을 많이 쌓아야 한다고 생각합니다.

 

같이 생각해 봅시다.

https://youtu.be/yMlG88KQ7jk?si=12SukZLo2hNiVXbA

 



반응형


반응형

오늘은 LangGraph Quick Start Tutorial 마지막 단원인 Part 7 : Time Travel 입니다.

 

이름에서 알 수 있듯이 과거로 돌아가서 당시 State를 바꾸는 겁니다. 

그러면 현재의 결과 값을 바꿀 수 있습니다.

 

바로 State 의 History 가 Checkpoint 단위로 Step 별로 다 관리가 되고 있기 때문에 가능한 겁니다.

 

이 기능을 사용하면 Agent 의 Process 중 오류가 발생하거나 아니면 디버깅을 하거나 혹은 다른 Business Requirements 중에 이 기능이 필요한 경우 적용해서 보다 고객의 요구 조건을 풍부하게 충족 시켜 주는 어플리케이션을 개발 할 수 있을 겁니다.

 

https://youtu.be/JgR5BJ7CLEw



반응형


반응형

오늘은 LangGraph Quick Start Tutorial Part 5 : Manually updating the State 를 다룹니다.

 

핵심 개념은 update_state 입니다.

 

Tool이나 AI 메세지를 임의로 만들어서 처리할 수 있구요.

이 때 Tool 이나 AI 를 Call 하지 않고 중간에 처리한 것 처럼 만드는 겁니다.

 

Message ID 를 사용하면 Tool 이나 AI 로부터 받은 기존의 메세지를 바꿀 수도 있습니다.

 

Graph 가 처리하는 과정에서 수정이 필요하거나 Agent의 궤적을 제어할 필요가 있을 때 유용한 기능입니다.

 

https://youtu.be/KitVTQivgHU

 



반응형


반응형

오늘은 Lang Graph 의 주요 기능 중 하나인 Human In The Loop 이라는 기능을 배웁니다.

 

AI Agent 가 일 하다가 어떤 결정을 해야 할 떄, 선택의 순간이 왔을 때 인간의 의견을 물어보도록 만들 수 있습니다.

 

Interrupt_before , Interrupt_after 가 AI Agent 가 그렇게 인간의 선택을 물어보도록 만들 수 있습니다.

 

이 HIL (Human In The Loop) 기능은 LangGraph 에서 Checkpointer 라는 개념을 기반으로 제공이 됩니다.

 

이 외에 지나간 과거의 State 를 변경할 수도 있고 그 기능을 이용해서 Time Travel 이라는 기능도 제공하고 있습니다.

 

오늘은 LangGraph Quick Start 의 Part 4 Human in the loop 를 공부하고 이어서 다른 다양한 기능을 계속 공부 하겠습니다.

 

그 개념들에 대한 공부가 마쳐지면 LangGraph 의 이러한 Checkpointer 를 이용한 advanced 한 기능들을 응용해서 다양한 Web Application을 만들어 보겠습니다.

 

https://youtu.be/eWe3dFHshgA

 



반응형


반응형

지난 시간에 이어서 LangGraph Chatbot with Tool 에 대해 알려 드립니다.

지난 시간에 LangGraph로 구현하는 로직을 모두 완료 했었습니다.
이번 비디오에서는 그 로직에 Streamlit 의 session_state와 chatbot 기능을 더 해 완성된 AI Application을 만들어 봅니다.

LangGraph의 Tool을 사용해 최신 정보까지 제공하는 대화형 AI Application 개발하는 과정을 보실 수 있습니다.

 

https://youtu.be/M4ejvxxLF_w?si=6gUX8C5hZ-gfNNE-

 

 

그리고 아래 웹사이트로 가면 완성된 AI Application과 전체 Source Code도 받아 보실 수 있습니다.

https://catchuplanggraph.streamlit.app/

 

Catchup LangGraph Tutorial

This app was built in Streamlit! Check it out and visit https://streamlit.io for more awesome community apps. 🎈

catchuplanggraph.streamlit.app

 

반응형
이전 1 2 다음