반응형
블로그 이미지
개발자로서 현장에서 일하면서 새로 접하는 기술들이나 알게된 정보 등을 정리하기 위한 블로그입니다. 운 좋게 미국에서 큰 회사들의 프로젝트에서 컬설턴트로 일하고 있어서 새로운 기술들을 접할 기회가 많이 있습니다. 미국의 IT 프로젝트에서 사용되는 툴들에 대해 많은 분들과 정보를 공유하고 싶습니다.
솔웅

최근에 올라온 글

최근에 달린 댓글

최근에 받은 트랙백

글 보관함

카테고리


반응형

이번 시간부터 영상에 약간의 변화를 주었습니다.
중간에 짤막한 짤들 넣는게 영상이란 안 맞는다는 의견이 많아서요.
과감하게 짤 영상들 없앴습니다.
언제나 제 영상을 봐 주시는 분들의 의견에 귀 기울이겠습니다.

오늘은 LangGraph에서 Tool을 사용하는 방법을 배워 보겠습니다.
이것을 배우면 Multiple Node를 사용해서 더 복잡한 기능을 구현할 수 있게 됩니다.

그러기 위해서 사용되는 bind_tools 라던가 add_conditional_edges 같은 새로운 메소드들을 배웁니다.

영상이 길어서 오늘은 전반부 LangGraph 소스 코드만 분석하구요.

다음 영상에서는 이 LangGraph 소스코드를 기반으로 Streamlit으로 웹 어플리케이션을 만드는 방법을 알아 보겠습니다.

 

https://youtu.be/f3GB5fQmTcM?si=Nu9FNQR5WsjGnNaI

 

제가 만든 웹어플리케이션을 보시고 소스코드도 가져가서 공부하고 싶으시면 이리로 오시면 됩니다.

https://catchuplanggraph.streamlit.app/

 

Catchup LangGraph Tutorial

This app was built in Streamlit! Check it out and visit https://streamlit.io for more awesome community apps. 🎈

catchuplanggraph.streamlit.app

 

반응형


반응형

LangChain - RAG - create_history_aware_retriever

 

지난 시간까지 RAG의 기본 기능을 배웠습니다.

AI Web Application에서 기본적으로 제공되어야 하는 것은 ChatBot 기능입니다.

 

이를 위해서는 Chat History를 관리해주는 기능이 추가 되어야 합니다.

AI는 이전 대화 내용을 기억하지 못하기 때문입니다.

 

이런 AI의 부족한 부분을 채워 주는 LangChain의 Retriever 가 바로 create_history_aware_retriever 입니다.

 

AI 하고 말이 통하게 만들어 주는 바로 그 Retriever.

 

오늘은 create_history_awere_retriever에 대해 배웁니다.

 

https://youtu.be/EQ6c9309T8c

 

오늘 매울 AI Web Application link는 아래에 있습니다. https://catchuplangchain.streamlit.app/LC_Quickstart_03_ConversationRetrievalChain

 

 

 

반응형

'Catchup AI' 카테고리의 다른 글

요즘 AI 앱 개발 트렌드 입니다. 이제부터 좀 더 복잡한 AI 앱 개발 기술로 들어갑니다. 우선 Agent란 무엇인지 이해하시면 많은 도움이 됩니다. (IBM 자료)  (0) 2024.07.28
챗지피티에게 코딩 시키기 2 - 개발자로서 이런것들을 준비 하세요. 다 길이 있네요. ;)  (1) 2024.07.24
챗지피티에게 코딩 시키기 1 - 앱 하나 뚝딱 이더라구요. 근데 저는 씩 웃었습니다. (쿠키 영상: 아코디언 연주)  (1) 2024.07.20
2024 AWS Summit 에서 발표된 AWS App Studio - Prompt 만으로 어플리케이션을 만들 수 있습니다  (4) 2024.07.15
LangChain + Streamlit = RAG + ChatBot : Streamlit 의 session_state를 사용해 RAG에 대화 기능을 구현합니다  (0) 2024.07.08
LangChain Quick Start - Chunk : 실력있는 개발자는 성능, 속도, 비용까지 고려 합니다. RAG에서의 데이터 처리  (0) 2024.06.24
[Tech Snippets] 랭체인! 너 블록체인과 무슨 관계야? 조사하면 다 나온다.  (0) 2024.06.21
BIGHUG - AI 들도 각각 개성이 있네. 사람처럼. AI 개성 파악은 더 나은 협업을 위한 열쇠예요. 사람처럼.  (1) 2024.06.04
RAG 직접 코딩으로 구현하면 확실하게 배웁니다. 제 소스코드 가져가서 맘껏 활용하세요.  (1) 2024.05.31
LangChain Quick Start - Retrieval Chain 요즘 AI Web App 개발에서 가장 중요한 방법론 중 하나인 RAG를 배웁니다. 단디 배웁시다  (0) 2024.05.29


반응형

이전 글에서 GPT 3 API로 초 간단 챕봇을 만들었습니다.

아래 내용이 그 소스 코드 입니다. (자세한 사항은 이전 글을 참조하세요)

https://coronasdk.tistory.com/1257

 

 

GPT-3 API로 초간단 Chatbot 만들기

오늘은 Python 과 ChatGPT API로 간단한 챗봇을 만들어 보겠습니다. import os import openai def open_file(filepath): with open(filepath, 'r', encoding='utf-8') as infile: return infile.read() openai.api_key = open_file('openaiapikey.txt') wh

coronasdk.tistory.com

 

오늘 볼 소스 코드는 아래와 같습니다.

 

이전 소스코드 보다 많이 복잡해 진 것 같지만 별다른 변화는 없고 그냥 26번째 줄 list를 추가했다는 내용밖에 없습니다.

 

우선 1~8번째 줄은 openai api를 사용하기 위해 api key를 제공하는 겁니다. 이전에 다룬 부분이니까 넘어가겠습니다.

 

그다음 10~23번째 줄은 openai.Completion.create() api를 사용하기 위해 만든 함수 입니다.

이전 초간단 챗봇 코드 보다 전달하는 파라미터를 많이 설정했습니다.

이 부분도 이전 글에서 다루었습니다.

 

https://coronasdk.tistory.com/1254

 

OpenAI API 첫 소스코드 분석 (초보자를 위한 해석)

지난번에 OpenAI API 연결을 테스트 하기 위해 만들었던 소스코드를 분석해 보겠습니다. 첫번째 import OpenAI는 OpenAI API 를 사용하기 위해 필요한 겁니다. 이것은 로컬에 OpenAI 를 깔았기 때문에 사용

coronasdk.tistory.com

25번째 줄은 이 파이썬 파일을 실행 했을 경우 그 아래 코드를 실행하라는 의미 입니다.

다른 파이썬 파일을 실행하고 그 파이썬 파일에서 이 파일을 import 한다면 그 아래 내용은 실행되지 않습니다.

그 설명도 윗 글에서 했습니다.

 

그 아래 while 문도 바로 전 글에서 다룬 부분인데 다른 부분은 list()를 추가 했다는 겁니다.

list()를 추가 한 이유는 대화를 할 때 이전 대화와 맥락이 맞는 답변을 받기 위해서 입니다.

 

그러기 위해서는 이전의 질문과 대답을 모두 같이 보내면 됩니다.

그러기 위해서 list를 사용하구요.

 

우선 26번째 줄에서 conversation 이라는 변수를 만들었고 이 변수에는 리스트가 담길 것이라고 선언했습니다.

아래 줄 while True: 는 그냥 아래 내용을 계속 실행하라는 무한 루프이구요.

user_input = input('USER: ') 는 사용자로 부터 입력 받은 내용을 user_input에 담는 겁니다.

이전 소스코드에소 그대로 있습니다. 다른 부분은 아래 라인 입니다.

 

이 user_input을 그대로 prompt로 사용하는 것이 아니라 위에 만들어 놓은 conversation이라는 리스트에 담는 겁니다.

 

conversation.append('USER: %s' % user_input)

 

%s 는 자바에서도 사용하는 것인다. string 형식의 내용이 담길 것이라는 거고 그 string은 ' ' 이 작은 따옴표 밖에 있는 % 에 나오는 내용이 됩니다.

 

그러면 conversation에 user_input 이 담기게 됩니다.

그 다음에 prompt 변수가 나옵니다.

 

여기서는 prompt_chat.txt 라는 파일의 내용을 불러오게 되는데요.

이 파일에는 다름과 같은 내용이 담겨져 있습니다.

이 대화는 USER 와 JAX가 나누는 대화이고 JAX는 세계 평화를 목표로 하는 감성적인 기계이다 라고 상황을 설정해 놓았습니다.

이렇게 상황을 설정하면 GPT 3 는 JAX 의 성격에 맞는 답변을 찾아서 보내 줍니다.

그 아래 <<BLOCK>> 은 의미가 없고 그냥 31번째 줄에서 보여 주듯이 위에서 설정한 text_block을 replace 해주기 위해 만들어 놓은 겁니다.

 

prompt = open_file('prompt_chat.txt').replace('<<BLOCK>>', text_block)

 

이렇게 되면 prompt에는 prompt_chat.txt에 기존에 있는 내용에 text_block을 합한 내용이 저장되게 됩니다.

 

prompt = prompt + '\JAX: '

 

부분은 답변을 표시할 때 그 앞에 JAX: 를 나타내기 위해서 만든 겁니다.

 

그러면 이제 질문이 완성 됐습니다.

 

이 질문을 이용해서 opanai.Completion.create() api를 사용해서 질문을 던지고 답변을 받으면 됩니다.

이 일을 하는 함수는 그 위에 gpt3_completion() 입니다.

 

response = gpt3_completion(prompt)

 

그 함수에 prompt를 던지고 openai로 부터 받는 응답은 response에 담기게 됩니다.

 

그 다음은 그 응답을 print 하는 겁니다.

 

이 대답은 다시 conversation에 추가 됩니다.

 

conversation.append('JAX: %s' % response)

 

이렇게 하면 다음번 질문을 할 때 이전 질문과 대답까지 다 합해서 openai의 GPT3에게 보내서 이전 대화와 맥락이 맞는 답변을 듣게 됩니다.

 

 

이렇게 미리 설정해 놓은 상황과 이전 응답에 맥락이 맞는 대화를 할 수 있는 챗봇을 만들었습니다.

다시 말씀 드리지만 위 응답은 GPT3의 가장 저렴한 테스트 모델인 text-ada-001을 사용했습니다.

비용 절감 차원에서 이 모델로 테스트 하고 있습니다.

text-davinci-003 모델을 사용하면 좀 더 그럴 듯한 대화를 나누실 수 있습니다.

 

전체 소스코드는 아래와 같습니다.

 

import openai

def open_file(filepath) :
    with open(filepath, 'r', encoding='utf-8') as infile :
        return infile.read()
        

openai.api_key=open_file('openaiapikey.txt')

def gpt3_completion(prompt, engine='text-davinci-003', temp=0.7, top_p = 1.0, tokens =400, freq_pen=0.0, pres_pen=0.0, stop=['JAX: ', 'USER: ']) :
    prompt = prompt.encode(encoding='ASCII', errors='ignore').decode()
    response = openai.Completion.create(
        #engine=engine,
        engine='text-ada-001', 
        prompt=prompt,
        temperature=temp,
        max_tokens=tokens,
        top_p=top_p,
        frequency_penalty=freq_pen,
        presence_penalty=pres_pen,
        stop=stop)
    text = response['choices'][0]['text'].strip()
    return text
  
if __name__ == '__main__' :
    conversation = list()
    while True:
        user_input = input('USER: ')
        conversation.append('USER: %s' % user_input)
        text_block = '\n'.join(conversation)
        prompt = open_file('prompt_chat.txt').replace('<<BLOCK>>', text_block)
        prompt = prompt + '\JAX: '
        response = gpt3_completion(prompt)
        print('JAX: ', response)
        conversation.append('JAX: %s' % response)
        

 

반응형

GPT-3 API로 초간단 Chatbot 만들기

2023. 2. 8. 00:13 | Posted by 솔웅


반응형

오늘은 Python 과 ChatGPT API로 간단한 챗봇을 만들어 보겠습니다.

 

import os
import openai

def open_file(filepath):
    with open(filepath, 'r', encoding='utf-8') as infile:
        return infile.read()

openai.api_key = open_file('openaiapikey.txt')

while True:
    prompt = input("\n Ask OpenAI Anything: ")
    completions = openai.Completion.create(prompt = prompt,
                                            engine='text-ada-001', #engine="text-davinci-003",
                                            max_tokens=100)   
    print(completions)  

아직 완성된 코드는 아닙니다. 하나 하나 보겠습니다.

 

Openai.api_key 부분 까지는 계속 반복되는 코드 블럭입니다.

Openai에게 api 사용 권한을 받기 위해 api key를 제공하는 부분 입니다.

 

챗봇 기능이 이뤄지는 부분은 while 문 부터 입니다.

 

while True: 는 무한 루프 입니다.

이 프로그램을 실행하면 끝마치는 방법은 강제 종료 (Ctrl Z) 해야 합니다.

 

그 다음은 prompt 변수 부분입니다.

이 변수는 openai.Completion.create api를 사용할 때 필요한 건데요. 이전 글에서도 봤듯이 사용자가 궁금해 하는 질문이 여기에 들어가게 됩니다.

prompt = input("\n Ask OpenAI Anything: ")

 

input()은 Python 의 메소드로 사용자의 입력을 받겠다는 겁니다.

이 부분은 실행되면 "" 안에 있는 내용이 출력 되고 Python은 사용자의 입력을 받을 준비를 하게 됩니다.

 

 

그 다음 부분이 openai의 API 입니다.

openai.Completion.create() api를 사용해서 질문을 던지고 대답을 받습니다.

파라미터는 간단하게 3가지만 전달합니다.

질문은 prompt 이구요. 여기에는 사용자가 입력한 질문이 들어가게 됩니다.

사용하는 openai 모델은 text-ada-001 입니다. 가장 저렴한 모델입니다.

좋은 모델을 사용하려면 text-davinci-003을 쓰면 됩니다.

요즘 유행하는 ChatGPT는 아직 api가 공개 되지 않았습니다.

나중에 공개 되면 그 모델 이름을 넣으면 ChatGPT API를 사용할 수 있습니다.

마지막 파라미터로는 max_tokens 가 사용 됐습니다.

Token 에 대해서는 여기서 알아 보세요.

 

https://platform.openai.com/tokenizer

 

OpenAI API

An API for accessing new AI models developed by OpenAI

platform.openai.com

 

여기서는 특정 문장이 몇개의 토큰으로 이뤄 졌는지 알 수 있는데요.

예를 들어 What is a capital city of South Korea? 가 몇개의 토큰으로 이뤄 져 있는지 알아 보겠습니다.

 

 

글자 수는 총 38자 이지만 토큰은 9개 이네요. 이 토큰은 GPT 모델이 사용하는 단위 입니다. 대개 한 단어가 1개의 토큰으로 이뤄 집니다. (그렇지 않은 경우도 있구요.)

위 경우를 보면 tokenized는 token과 ized 이렇게 두개의 토큰으로 간주 하는 것을 볼 수 있습니다.

 

하여간 이 코드에서 사용한 아래 스크립트 내용은 최대 100개의 토큰까지 허용하겠다는 겁니다.

max_tokens=100

 

토큰이 많으면 비용과 시간이 늘어 날 수 있겠죠.

 

이렇게 openai.Completion.creat() api를 이용해서 질문을 보내면 response를 받게 되는데요.

이 response는 completions라는 변수에 담기게 됩니다.

 

print(completions) 는 이 completions를 출력하라는 python 메소드 입니다.

 

이 코드를 실행해서 질문을 던져 보겠습니다.

 

남한의 수도는 어디냐고 물어봤더니 긴 Json 형식의 대답을 받았습니다.

openai.Completion.creat() api 는 질문에 대한 답을 이런 형식으로 줍니다.

다양한 정보가 담겨 있습니다.

 

질문에 대한 답변은 choices 에 있는 text 부분입니다.

서울이 남한의 수도라는 대답이 담겨 있습니다.

 

이 부분만 따로 뽑아서 표시해야 제대로 된 chatbot이 될 것 같습니다.

 

그 방법은 아래와 같이 하면 됩니다.

 

completion = completions.choices[0].text

print(completion)

 

completions의 choices 라는 배열 안에 있는 text 값만 따로 completion이라는 변수에 담아서 이것을 출력 하는 겁니다.

 

이렇게 하면 다음과 같이 질문을 계속 주고 받을 수 있습니다.

 

답변이 모두 정답은 아닙니다.

왜냐하면 여기서 사용한 모델은 가장 저렴한 테스트 용인 text-ada-001 이기 때문입니다.

좀 더 정확한 답을 받으려면 text-davinci-003 를 사용하면 됩니다. 이 모델이 조금 더 비싸죠.

 

이 모델은 남한의 수도만 서울이라고 맞히고 북한, 캐나다, 호주의 수도는 다 틀렸습니다.

(정답은 북한 - 평양, 캐나다 - 오타와, 호주 - 캔버라 입니다.)

 

이렇게 계속 질문을 하고 답변을 받는 채팅 기능이 완성 됐습니다.

 

전체 코드는 아래와 같습니다.

 

import os
import openai

def open_file(filepath):
    with open(filepath, 'r', encoding='utf-8') as infile:
        return infile.read()

openai.api_key = open_file('openaiapikey.txt')

while True:
    prompt = input("\n Ask OpenAI Anything: ")
    completions = openai.Completion.create(prompt = prompt,
                                            engine='text-ada-001', #engine="text-davinci-003",
                                            max_tokens=100)
    completion = completions.choices[0].text
    print(completion)

 

 

한가지 불완전한 부분이 있는데요.

 

GPT3와 응답을 하게 되면 GPT3 가 이전 질문을 기억하고 그 맥락에 맞는 답변을 하게 됩니다.

그런데 이렇게 openai.Completion.create() api 에 질문을 하나만 넣으면 이 전에 대화 했던 내용은 전혀 참고가 될 수 없습니다.

 

맥락이 있는 대화를 할 수 있는 챗봇을 만들려면 이 질문 부분에 이전의 질문까지 다 같이 보내야 합니다.

 

이 부분은 list를 사용해서 간단히 해결 할 수 있습니다.

 

그 소스는 다음 글에서 분석해 보겠습니다.

반응형
이전 1 다음