D2L - Local Environment Setting
2023. 6. 26. 04:52 |
반응형
* Python and pip upgrade
python --version
pip install pip --upgrade
* D2L install
pip install d2l==1.0.0a0
* Pytorch install
pip install torch==1.12.0 torchvision==0.13.0
* Jupyter lab install
pip install jupyterlab
https://jupyterlab.readthedocs.io/en/latest/getting_started/installation.html
* Jupyter Lab 실행
python -m jupyterlab
==> Python 3 (ipykernel)
반응형
'Dive into Deep Learning > D2L Linear Neural Networks' 카테고리의 다른 글
D2L - 4.4. Softmax Regression Implementation from Scratch (0) | 2023.06.26 |
---|---|
D2L - 4.3. The Base Classification Model (0) | 2023.06.26 |
D2L - 4.2. The Image Classification Dataset (0) | 2023.06.26 |
D2L 4.1. Softmax Regression (0) | 2023.06.26 |
D2L - 4. Linear Neural Networks for Classification (0) | 2023.06.26 |
D2L - 3.5. Concise Implementation of Linear Regression, 이미지 분류 데이터 (Fashion-MNIST) (0) | 2023.06.22 |
D2L - 3.4. Linear Regression Implementation from Scratch , Softmax 회귀(regression) (0) | 2023.06.22 |
D2L - 3.3. Synthetic Regression Data (0) | 2023.06.22 |
D2L 3.2. Object-Oriented Design for Implementation (0) | 2023.06.22 |
D2L 3.2. 선형 회귀를 처음부터 구현하기 (0) | 2023.06.22 |