반응형
블로그 이미지
개발자로서 현장에서 일하면서 새로 접하는 기술들이나 알게된 정보 등을 정리하기 위한 블로그입니다. 운 좋게 미국에서 큰 회사들의 프로젝트에서 컬설턴트로 일하고 있어서 새로운 기술들을 접할 기회가 많이 있습니다. 미국의 IT 프로젝트에서 사용되는 툴들에 대해 많은 분들과 정보를 공유하고 싶습니다.
솔웅

최근에 올라온 글

최근에 달린 댓글

최근에 받은 트랙백

글 보관함

카테고리


반응형

 

 

 

 

지난 7월 11일 목요일 뉴욕에서 열렸던 Amazon New York Summit 에 다녀왔다.

거기서 열리는 AWS DeepRacer League 에 참여하기 위해서 이다.

 

 

목요일 금요일 이틀간 휴가를 내고 다녀왔다.

플로리다 올란도에서 뉴저지 뉴왁공항까지 수요일 밤비행기 타고 갔다가 목요일 밤비행기 타고 왔다.

 

완전 녹초..........

 

다녀와서 보니 잘 갔다 왔다.

배운것도 많고 느낀것도 많고....

 

결과는 14.99초로 19등

 

 

나는 Empire City Track에서 경주 하는 줄 알았는데 off line 경주는 re:Invent 2018 에서 하는 거였다.

내가 훈련시킨 모델들은 다 Empire City Track에서만 테스트 했었는데....

 

그래도 14.99초로 19등 한 것은 만족 스럽다. 

on line 에서 주행 하는 것과 off line에서 주행하는 것의 차이점을 체험할 수 있었고 off line 대회는 어떻게 진행 되는지도 알 수 있었다.

 

새벽에 도착한 42번가는 인적도 없는데 바쁘게 움직이는 광고판들로 멈추지 않는 화려함을 뽐내고 있었다.

10여년 전 뉴저지 살 때 와봤던 42번가. 그때의 광고판들보다 따따블은 더 많아진 것 같다.

 

 

이 사진은 경주가 진행됐던 re:Invent 2018 트랙

 

 

 

 

a Cloud GURU의 대표인 라이언도 만나 사진 한컷 부탁했다.

나도 라이언이 진행한 AWS 온라인 강좌를 수강했었다.

 

 

Summit 한바퀴 돌고 받은 선물들....

 

 

확실히 경제가 좋아지긴 한 것 같다.

 

10년전 여기 살 때도 다른 엑스포들 좀 다녔는데...

그 때는 선물이 거의 없었다. 

2008년 경제위기 직후였으니 .... 받아봤자 고작 볼펜 정도 였는데.....

 

이번에는 티셔츠, 양말들도 있고..... 정말 다양하고 좋은 선물들을 많이 얻을 수 있었다.

 

피곤한 여행이었지만 배운것도 많고... 느낀 것도 많고... 좋은 사람들도 만나고... 하여간 좋았다.

 

 

반응형


반응형

6월에 열린 아마존 AWS Deepracer Virtual Race #2 에서 20.695초 104등을 차지했다.

총 참가자 수는 572명이다.

 

 

나는 Sofia와 Dalyo 두 종류의 모델을 훈련 시키고 있다. 

이번 대회에서는 주로 Sofia를 출전 시키다가 나중에 Dalyo를 출전 시켰다.

최고 점수는 Dalyo로 따냈다.

 

Sofia와 Dalyo 두 모델의 근본적인 차이점은 Action Space 였다.

 

Sofia Action Space

Dalyo Action Space

Sofia는 최고 스피드를 5로 했고 Dalyo는 최고 스피드를 8로 했다.

아무래도 최고 스피드를 더 높게 만든 Dalyo가 더 성적이 좋게 나온 것 같다.

처음에는 Sofia가 안정적이라서 계속 참가를 시켰다.

Dalyo는 거의 완주를 못 했었다. 아마 속도가 너무 빨리서 트랙을 벗어나는 경우가 많았나 보다.

 

나중에 좀 더 연습을 시켜서 Dalyo의 완주율이 50% 정도 올랐다. 

그 완주한 점수들이 Sofia 모델보다 훨씬 높아서 결국 최고 점수는 Dalyo가 차지 했다.

 

이 Action Space는 최초 모델을 만들 때 정해주고 그 다음에는 수정이 불가능 하게 돼 있다.

 

그래서 이 Sofia와 Dalyo를 훈련 시킬 때는 주로 reward_function을 수정해 가면서 성능 향상을 시키려고 노력했다.

 

Sofia는 거의 10번 훈련 시켰었는데 처음 Sofia를 탄생 시켰을 때의 reward_function은 다음과 같다.

 

def reward_function(params):
    '''
    Example of rewarding the agent to follow center line
    '''
    
    # Read input parameters
    track_width = params['track_width']
    distance_from_center = params['distance_from_center']
    
    # Calculate 3 markers that are at varying distances away from the center line
    marker_1 = 0.1 * track_width
    marker_2 = 0.25 * track_width
    marker_3 = 0.5 * track_width
    
    # Give higher reward if the car is closer to center line and vice versa
    if distance_from_center <= marker_1:
        reward = 1.0
    elif distance_from_center <= marker_2:
        reward = 0.5
    elif distance_from_center <= marker_3:
        reward = 0.1
    else:
        reward = 1e-3  # likely crashed/ close to off track
    
    return float(reward)

 

이 때의 트랙은 직선 트랙이었다.

그래서 중앙선에 가까운 경우 reward를 주는 로직을 만들어서 훈련 시켰다.

 

두번째도 Straigh track인데 함수를 조금 바꿨다.

 

def reward_function(params):
    '''
    Example of rewarding the agent to follow center line
    '''
    reward=1e-3
    
    # Read input parameters
    track_width = params['track_width']
    distance_from_center = params['distance_from_center']
    steering = params['steering_angle']
    speed = params['speed']
    all_wheels_on_track = params['all_wheels_on_track']
    
    if distance_from_center >=0.0 and distance_from_center <= 0.03:
        reward = 1.0
    
    if not all_wheels_on_track:
        reward = -1
    else:
        reward = params['progress']
        
    # Steering penality threshold, change the number based on your action space setting
    ABS_STEERING_THRESHOLD = 15

    # Penalize reward if the car is steering too much
    if steering > ABS_STEERING_THRESHOLD:
        reward *= 0.8
        
    # add speed penalty
    if speed < 2.5:
        reward *=0.80
    
    return float(reward)

 

완전 Stupid 한 script 이다.

추가한 부분에 reward = reward+n 이런식으로 reward가 더해지거나 빼지는 방식으로 스크립트를 작성했어야 했는데 멍청하게도 그냥 reward 값을 그냥 대입하는 방식으로 돼 있다.

 

위에 보면 차량이 center로 부터 0.03 이상 떨어지지 않으면 reward를 1.0으로 설정하고 그 다음에 트랙 안에 있지않으면 reward = reward-1을 해야 하는데 그냥 reward=-1을 해 버렸다.

reward=params['progress']도 reward=reward+['progress']로 했어야 했다.

 

하여간 이러한 실수가 이 후에도 계속 됐고 후반부에 가서야 이것이 잘 못 됐다는 걸 발견 했다.

 

위 스크립트에서는 distance_from_center 부분은 아무런 역할을 하지 않는 부분이 돼 버렸다.

 

세번째는 Oval Track에서 훈련 시켰고 네번째는 London loop에서 훈련 시켰다.

 

 

 

다섯번 째 부터 6월 대회에서 사용했던 Kumo Torakku Track에서 훈련 시켰다.

그리고 Dalyo라는 새 모델도 만들었다.

 

이 때부터 Sofia와 Dalyo 두 모델을 훈련 시켰지만 Sofia가 대부분 완주를 하고 Dalyo는 그렇지 못했기 때문에 계속 Sofia만 출전 시켰었다.

 

Sofia는 이후 10여번 훈련 시켰고 Dalyo는 4번 정도 더 훈련 시켰다.

 

Sofia의 Kumo Torakku 트랙의 마지막 reward_function은 이렇다.

 

def reward_function(params):
    '''
    Example of rewarding the agent to follow center line
    '''
    reward=1e-3
    
    # Read input parameters
    track_width = params['track_width']
    distance_from_center = params['distance_from_center']
    steering = params['steering_angle']
    speed = params['speed']
    all_wheels_on_track = params['all_wheels_on_track']
    
    if not all_wheels_on_track:
        reward = -1
    else:
        reward = params['progress']
        
    # add speed penalty
    if speed < 1.0:
        reward *=0.80
    else:
        reward += speed
    
    return float(reward)

 

speed를 좀 더 빨리 하기 위해 reward에 현재의 스피드를 더하는 로직을 사용했다.

근데 별 효과는 없었다.

 

Dalyo의 Kumo Torakku 트랙 마지막 reward_function도 똑 같다.

 

이 Virtual 경기 대회는 횟수에 상관없이 계속 모델을 참가 시킬 수 있기 때문에 (30분 간격으로) 나중에는 완주 횟수는 떨어지지만 점수가 더 높게 나오는 Dalyo 모델을 주로 출전 시켰고 결국은 104 등을 기록 했다.

 

 

7월에는 3번째 Virtual 대회가 열리고 1번의 offline 대회가 뉴욕에서 열릴 예정이다.

트랙은 둘 다 Empire City 트랙.

가능하면 둘 다 참가할 계획이다.

 

6월 Virtual 대회를 참가하면서 배운 것은 두가지

1. reward_function을 바꾼 후 당초 예상대로 그 변경 내용이 적용 되는지 확인 하는 것이 필요하다.

   AWS의 Debugging 툴을 활용해서 확인 해야 겠다.

2. 훈련을 위해 사용 되는 3가지 주요 세팅 중 Hyperparameter 를 활용한 성능 향상 방법을 배워야 겠다.

 

Action Space는 최초 모델을 생성할 때 설정하고 그 이후에는 변경이 불가능 하다.

reward_function과 Hyperparameter는 변경 가능한데 지금까지는 reward_function만 변경하면서 훈련 시켰다.

 

Hyperparameter는 잘 몰랐기 때문이다.

이제 Hyperparameter를 공부해서 이 부분도 모델 성능 향상에 활용해야 20초 대를 넘을 수 있을 것 같다.

 

 

이번 Empire City 트랙을 사용하는 Virtual Circuit에서는 15초대 진입과 50등 이내로 돌입하는 것을 목표로 참가할 계획이다.

 

화이팅!!!!!!!!!!!!

반응형

MEGAZONE CLOUD AWS DeepRacer League in Korea

2019. 6. 25. 22:23 | Posted by 솔웅


반응형

메가존 클라우드 AWS Deepracer League가 개최 됩니다.

 

참가 신청은 이곳에서 하실 수 있네요.

 

https://www.megazone.com/deepracer_league_01/ 

 

제1회 메가존 클라우드 AWS DeepRacer 리그 참가 신청

Asia-Pacific & KOREA, No.1 AWS Premier Consulting Partner 메가존 클라우드가 제1회 AWS DeepRacer 대회를 개최 합니다.

www.megazone.com

1등 상금이 100만원에 라스베가스 re:Invent 왕복 항공권 및 숙박권...... 와우....

 

AWS DeepRacer 차량 모델이 있으신 분은 참가하시면 좋겠네요.

(관계자 분이 확인해 주셨는데 DeepRacer 차량이 없어도 된답니다. 관심 있으신 분들은 일단 가셔서 주최측에 있는 차량을 이용해서 참가 하실 수 있답니다.)

 

제가 사는 곳은 조그만 동네라서 차량을 트랙에서 직접 테스트 해 볼 기회를 갖기 무척 힘듭니다.

한국에 계신 분들은 아주 좋은 기회인 듯 합니다.

 

참가하셔서 좋은 결과 있으시길 바랍니다.

 

 

Asia-Pacific & KOREA, No.1 AWS Premier Consulting Partner 메가존 클라우드가 AWS DeepRacer 리그를 개최 합니다.

 

실제 트랙이 설치되어 참가자가 직접 제작한 모델을 실제 차량(Agent)으로 주행 가능하며, 우승 시 상금 외 미국 re:Invent 기간 왕복 항공 및 숙박권이 주어지오니, 많은 신청 부탁 드립니다.

 

  • 대회명 : MEGAZONE CLOLUD Circuit Challenge
  • 대회 일자 : 2019년 7월 4일 (목)
  • 대회 장소 : 신도림 쉐라톤서울 디큐드시티호텔 6층 그랜드볼룸 [약도]
  • 대회 시간 : 오전 10시 ~ 오후 05시
  • 시상
    – 1등 : 상금 100만원 + re:Invent 왕복 항공 및 숙박권
    – 2등 : 상금 50만원
    – 3층 : 상금 30만원
  • 참가 자격 : 직접 제작한 AWS DeepRacer 모델을 보유한 사람

 

메가존 클라우드와 함께 세계 신기록에 도전해 보세요. [세계 기록 보기]

※ 본 리그는 메가존 클라우드가 자체적으로 진행하는 행사로 AWS에서 개최하는 리그와 무관합니다.
※ 상금 및 경품 지급 시 소득세 등 제세공과금이 차감 혹은 청구 됩니다.
※ 본 경기 규칙은 AWS DeepRacer League 규칙을 따르며 트랙 또한 re:Invent 2018 트랙에서 진행 됩니다.

 

========================================

 

저는 AWS Deepracer 모델 차량을 7월 중순에 받을 예정이라서 10월 3일 토론토에서 열리는 경기에 참가할 수 있을 것 같습니다.

 

휴가 내고 비행기 타고 가서 참가할 생각인데.... 

어떻게 될 지 아직...... 

 

지금 제가 만들고 있는 모델은 Kumo Torakku 트랙에서 23초를 기록하고 그 이후에는 전혀 기록이 나아 지질 않고 있습니다.

지금 1,2,3 등은 모두 10초 대 이던데.... 그런 기록은 어떻게 하면 낼 수 있을 지.......

 

3등은 Kimwooglae인걸로 봐서 한국분인것 같네요.

 

 

어떻게 연락해서 방법 좀 배울 수 없을까?

 

혹시 AWS Deepracer 공부하는 커뮤니티 있으면 알려 주세요.

혼자 공부하는 것 보다 서로 경험 공유하면서 배우면 훨씬 좋을 것 같습니다.

 

 

반응형


반응형

Hands-on Exercise 1: Model Training Using AWS DeepRacer Console

 

This is the first of four exercises that you will encounter in this course. This first exercise guides you through building, training, and evaluating your first RL model using the AWS DeepRacer console. To access the instructions for three of these exercises, download and unzip this course package. For this particular exercise, find and open the relevant PDF file and follow the steps within to complete the exercise.

*Note: This exercise is designed to be completed in your AWS account. AWS DeepRacer is part of AWS Free Tier, so you can get started at no cost. For the first month after sign-up, you are offered a monthly free tier of 10 hours of Amazon SageMaker training and 60 simulation units of Amazon RoboMaker (enough to cover 10 hours of training). If you go beyond those free tier limits, you will accrue additional costs. For more information, see the AWS DeepRacer Pricing page.

 

Hands-on Exercise 1- Model Training Using AWS DeepRacer Console.pdf
0.23MB

 

 

 

 

Hands-on Exercise 2- Advanced Model Training Using AWS DeepRacer Console.pdf
0.25MB

 

 

For feedback, suggestions, or corrections, email us at aws-course-feedback@amazon.com.

 

 

Hands-on Exercise 3- Distributed AWS DeepRacer RL Training using Amazon SageMaker and AWS RoboMaker.pdf
0.46MB

 

SageMakerForDeepRacerSetup.yaml
0.01MB

 

AWSTemplateFormatVersion: "2010-09-09"
Description: 'AWS DeepRacer: Driven by Reinforcement Learning'
Parameters:
  SagemakerInstanceType:
    Description: 'Machine Learning instance type that should be used for Sagemaker Notebook'
    Type: String
    AllowedValues:
      - ml.t2.medium
      - ml.t2.large
      - ml.t2.xlarge
      - ml.t3.medium
      - ml.t3.large
      - ml.t3.xlarge
      - ml.m5.xlarge
    Default: ml.t3.medium
  CreateS3Bucket:
    Description: Create and use a bucket created via this template for model storage
    Default: True
    Type: String
    AllowedValues:
      - True
      - False
    ConstraintDescription: Must be defined at True|False.
  VPCCIDR:
    Description: 'CIDR Block for VPC (Do Not Edit)'
    Type: String
    Default: 10.96.0.0/16
  PUBSUBNETA:
    Description: 'Public Subnet A (Do Not Edit)'
    Type: String
    Default: 10.96.6.0/24
  PUBSUBNETB:
    Description: 'Public Subnet B (Do Not Edit)'
    Type: String
    Default: 10.96.7.0/24
  PUBSUBNETC:
    Description: 'Public Subnet C (Do Not Edit)'
    Type: String
    Default: 10.96.8.0/24
  PUBSUBNETD:
    Description: 'Public Subnet D (Do Not Edit)'
    Type: String
    Default: 10.96.9.0/24
  S3PathPrefix:
    Type: String
    Description: 'Bootstrap resources prefix'
    Default: 'awsu-spl-dev/spl-227'
  S3ResourceBucket:
    Type: String
    Description: 'Bootstrap S3 Bucket'
    Default: 'aws-training'
Conditions:
  CreateS3Bucket: !Equals [ !Ref CreateS3Bucket, True ]
  #  NoCreateS3Bucket: !Equals [ !Ref CreateS3Bucket, False ]
Resources:

# Defining the VPC Used for the sanbox ENV, and notebook instance
  VPC:
    Type: 'AWS::EC2::VPC'
    Properties:
      CidrBlock: !Ref VPCCIDR
      EnableDnsSupport: 'true'
      EnableDnsHostnames: 'true'
      Tags:
        - Key: Name
          Value: 'DeepRacer Sandbox'
# There is a few calls made to public to download supporting resources
  InternetGateway:
    Type: 'AWS::EC2::InternetGateway'
    DependsOn: VPC
    Properties:
      Tags:
        - Key: Name
          Value: 'DeepRacer Sandbox IGW'
# Attached this IGW to the sanbox VPC
  AttachGateway:
    Type: 'AWS::EC2::VPCGatewayAttachment'
    DependsOn:
      - VPC
      - InternetGateway
    Properties:
      VpcId: !Ref VPC
      InternetGatewayId: !Ref InternetGateway
# Default setting in the notebook is to use Public IP address to communicate
# between instances running the simulation, and the instances collecting and
# processing. A NatGW could have been used with added costs, but would allow for
# use of private IP address.

# Found in testing that not all ML instance types may not be deployed or avaliable
# in all AZ's within a given region. We are using the newest instance family of T3
  PublicSubnetA:
    Type: 'AWS::EC2::Subnet'
    DependsOn: VPC
    Properties:
      VpcId: !Ref VPC
      CidrBlock: !Ref PUBSUBNETA
      AvailabilityZone: !Select
        - '0'
        - !GetAZs ''
      Tags:
        - Key: Name
          Value: 'Deepracer Sandbox - Public Subnet - A'
  PublicSubnetB:
    Type: 'AWS::EC2::Subnet'
    DependsOn: VPC
    Properties:
      VpcId: !Ref VPC
      CidrBlock: !Ref PUBSUBNETB
      AvailabilityZone: !Select
        - '1'
        - !GetAZs ''
      Tags:
        - Key: Name
          Value: 'Deepracer Sandbox Public Subnet - B'
  PublicSubnetC:
    Type: 'AWS::EC2::Subnet'
    DependsOn: VPC
    Properties:
      VpcId: !Ref VPC
      CidrBlock: !Ref PUBSUBNETC
      AvailabilityZone: !Select
        - '2'
        - !GetAZs ''
      Tags:
        - Key: Name
          Value: 'Deepracer Sandbox Public Subnet - C'
  PublicSubnetD:
    Type: 'AWS::EC2::Subnet'
    DependsOn: VPC
    Properties:
      VpcId: !Ref VPC
      CidrBlock: !Ref PUBSUBNETD
      AvailabilityZone: !Select
        - '3'
        - !GetAZs ''
      Tags:
        - Key: Name
          Value: 'Deepracer Sandbox Public Subnet - D'
# Define the Public Routing Table
  PublicRouteTable:
    Type: 'AWS::EC2::RouteTable'
    DependsOn:
      - VPC
      - AttachGateway
    Properties:
      VpcId: !Ref VPC
      Tags:
        - Key: Name
          Value: 'Deepracer Sandbox Public Routing Table'
# And add in the default route to 0.0.0.0/0
  PublicRouteIGW:
    Type: 'AWS::EC2::Route'
    DependsOn:
      - PublicRouteTable
      - InternetGateway
    Properties:
      RouteTableId: !Ref PublicRouteTable
      DestinationCidrBlock: 0.0.0.0/0
      GatewayId: !Ref InternetGateway
# Attach the routing table to each of the subnets
  PublicRouteTableAssociationA:
    Type: 'AWS::EC2::SubnetRouteTableAssociation'
    Properties:
      SubnetId: !Ref PublicSubnetA
      RouteTableId: !Ref PublicRouteTable
  PublicRouteTableAssociationB:
    Type: 'AWS::EC2::SubnetRouteTableAssociation'
    Properties:
      SubnetId: !Ref PublicSubnetB
      RouteTableId: !Ref PublicRouteTable
  PublicRouteTableAssociationC:
    Type: 'AWS::EC2::SubnetRouteTableAssociation'
    Properties:
      SubnetId: !Ref PublicSubnetC
      RouteTableId: !Ref PublicRouteTable
  PublicRouteTableAssociationD:
    Type: 'AWS::EC2::SubnetRouteTableAssociation'
    Properties:
      SubnetId: !Ref PublicSubnetD
      RouteTableId: !Ref PublicRouteTable
# Define a S3 endpoint for all the S3 traffic during training
  S3Endpoint:
    Type: AWS::EC2::VPCEndpoint
    Properties:
      VpcId: !Ref VPC
      RouteTableIds:
        - !Ref PublicRouteTable
      ServiceName: !Join
        - ''
        - - com.amazonaws.
          - !Ref 'AWS::Region'
          - .s3
      PolicyDocument:
        Version: 2012-10-17
        Statement:
          - Effect: Allow
            Principal: '*'
            Action:
              - 's3:*'
            Resource:
              - '*'
# This exercise is going to need a bucket to store any file generated from training
# There is a conditions to evaluate if the PRAM is true, else this resource would
# not be created.
  SandboxBucket:
    Type: 'AWS::S3::Bucket'
    DeletionPolicy: Retain
    Condition: CreateS3Bucket
    Properties:
      BucketName:
        Fn::Join:
          - "-"
          - - deepracer-trainingexercise
            - Ref: AWS::Region
            - Ref: AWS::AccountId
# Sagemaker is going to be making calls to Robomaker to launch the sim, and
# Sagemaker to launch the training insance. This requries AWS credentals. A
# Principal of sagemaker and robomaker needs to be assiged as both service will
# assuming this role. Default Sagemaker full access and s3 access is needed.
  SageMakerNotebookInstanceRole:
    Type: 'AWS::IAM::Role'
    Properties:
      AssumeRolePolicyDocument:
        Version: 2012-10-17
        Statement:
          - Effect: Allow
            Principal:
              Service:
                - sagemaker.amazonaws.com
                - robomaker.amazonaws.com
            Action:
              - 'sts:AssumeRole'
      ManagedPolicyArns:
        - 'arn:aws:iam::aws:policy/AmazonSageMakerFullAccess'
      Path: /
      Policies:
        - PolicyName: DeepRacerPolicy
          PolicyDocument:
            Version: 2012-10-17
            Statement:
              - Effect: Allow
                Action: [ 's3:*',
                          'iam:GetRole' ]
                Resource: '*'
# This is how the notebook gets loaded on to sagemaker. There is a zip file with
# with the needed files, and a second http call to pull down the notebook.
# This is only done "OnCreate" - when the sagemaker instance is first deployed
# You can can the script get run "OnStart" (when a sagemaker instance changes
# from a stopped state to a running state). This would automaticlly update file
# to be the latest form source, but could over write changes applied during
# your testing
  SageMakerNotebookInstanceLifecycleConfig:
    Type: 'AWS::SageMaker::NotebookInstanceLifecycleConfig'
    Properties:
  #    OnStart:
  #      - Content:
  #          Fn::Base64:
  #            #!/bin/bash
  #            !Sub |
  #            cd SageMaker
  #            chown ec2-user:ec2-user -R /home/ec2-user/SageMaker

      OnCreate:
        - Content:
            Fn::Base64:
              !Sub |
              cd SageMaker
              curl -O https://us-west-2-${S3ResourceBucket}.s3.amazonaws.com/${S3PathPrefix}/scripts/rl_deepracer_robomaker_coach.ipynb
              curl -O https://us-west-2-${S3ResourceBucket}.s3.amazonaws.com/${S3PathPrefix}/scripts/rl_deepracer_robomaker_coach.zip
              unzip rl_deepracer_robomaker_coach.zip
              chown ec2-user:ec2-user -R /home/ec2-user/SageMaker
# Security Group for sagemaker instance running in this VPC
  SagemakerInstanceSecurityGroup:
    Type: AWS::EC2::SecurityGroup
    Properties:
      GroupDescription: Sagemaker Security Group
      VpcId: !Ref VPC
      SecurityGroupIngress:
      - IpProtocol: tcp
        FromPort: 1
        ToPort: 65535
        CidrIp: !Ref VPCCIDR
      - IpProtocol: udp
        FromPort: 1
        ToPort: 65535
        CidrIp: !Ref VPCCIDR
      SecurityGroupEgress:
      - IpProtocol: tcp
        FromPort: 1
        ToPort: 65535
        CidrIp: !Ref VPCCIDR
      - IpProtocol: udp
        FromPort: 1
        ToPort: 65535
        CidrIp: !Ref VPCCIDR
# Creating the Sagemaker Notebook Instance
  SageMakerNotebookInstance:
    Type: 'AWS::SageMaker::NotebookInstance'
    Properties:
      #NotebookInstanceName: 'DeepracerSagemakerSandbox'
      NotebookInstanceName: !Join ["-", ["DeepRacerSagemakerSandbox", !Ref "AWS::StackName"]]
      SecurityGroupIds:
        - !GetAtt
          - SagemakerInstanceSecurityGroup
          - GroupId
      InstanceType: !Ref SagemakerInstanceType
      SubnetId: !Ref PublicSubnetA
      Tags:
        - Key: Name
          Value: 'DeepRacer Sandbox'
      LifecycleConfigName: !GetAtt
          - SageMakerNotebookInstanceLifecycleConfig
          - NotebookInstanceLifecycleConfigName
      RoleArn: !GetAtt
          - SageMakerNotebookInstanceRole
          - Arn
Outputs:
  # Display the name of the bucekt that was created from this CFN Stack
    ModelBucket:
      Condition: CreateS3Bucket
      Value: !Ref SandboxBucket
  # URL to get to the Sagemaker UI, and find the Jupyter button. 
    SagemakerNotebook:
      Value:
        !Sub |
          https://console.aws.amazon.com/sagemaker/home?region=${AWS::Region}#/notebook-instances/${SageMakerNotebookInstance.NotebookInstanceName}

반응형
이전 1 다음