반응형
블로그 이미지
개발자로서 현장에서 일하면서 새로 접하는 기술들이나 알게된 정보 등을 정리하기 위한 블로그입니다. 운 좋게 미국에서 큰 회사들의 프로젝트에서 컬설턴트로 일하고 있어서 새로운 기술들을 접할 기회가 많이 있습니다. 미국의 IT 프로젝트에서 사용되는 툴들에 대해 많은 분들과 정보를 공유하고 싶습니다.
솔웅

최근에 올라온 글

최근에 달린 댓글

최근에 받은 트랙백

글 보관함

카테고리


반응형

인도 미녀와 한 팀 먹어 AI 해커썬에서 우승?! 시애틀 Microsoft 본사에서 열린 하루짜리 행사에서 1등을 거머쥔 비하인드 스토리를 공개합니다.

OSS4AI가 주최하는 이 행사에 저는 세 번째 도전 만에 드디어 1등을 차지했는데요, 우승의 열쇠가 정말 ‘인도 미녀’ 팀원 덕분이었을까요? (농담 반 진담 반!)
이번 팀은 단순히 코드만 잘 짠 게 아니라, 짧은 시간 안에 팀워크를 극대화해서 훌륭한 결과를 만들어낸 것이 가장 큰 승리 비결이었습니다.

이 영상에서는:

시애틀의 다양한 AI 커뮤니티와 작은 해커썬의 장점
하루 안에 ‘아이디어 → 개발 → 발표’까지 마무리하는 진행 방식
만화를 만들려다 갑자기 ‘코미디 오디오’ 앱으로 아이디어가 급변한 과정
낯선 사람들과 급조된 팀이 어떻게 1등에 도달했는지
그리고 제가 얻은 꿀팁 & 배운 점까지
자세하게 공유합니다.
AI 개발자부터 처음 해커썬을 접하는 분, 혹은 단순히 궁금한 일반인들까지 모두 재미있게 보실 수 있을 거예요.
‘짧은 시간에, 전혀 모르는 사람들과 합을 맞춰, 완성도 있는 결과물을 만드는 방법’이 궁금하다면 꼭 시청해 보세요!
클릭 한 번으로 우승 노하우와 현장의 에너지를 그대로 느끼실 수 있습니다.

지금 바로 영상에서 확인하세요! 

 

https://youtu.be/XHjX1Od7zC4?si=-44or69gx6WzBiRm

 

반응형


반응형

그동안 Application 개발은 프로그래밍 언어를 배운 사람들만의 전유물이었다면,

AI Application 개발은 그렇지 않은 사람들에게도 어플리케이션 개발의 기회를 줍니다.

AI 는 인간의 언어를 이해하고 인간의 언어를 통해서 작동되는 툴이라서 그렇습니다.

이 추론은 AI 로 부터 좀 더 Quality 높은 답변을 받도록 하는 기술 입니다.

이 부분이 바로 인간의 언어로 프로그래밍 할 수 있는 부분입니다.

이 기술을 배우면 굳이 AI 어플리케이션 개발 뿐만 아니라 일상 생활에서도 AI 를 좀 더 잘 활용하는데 도움이 됩니다.

이 비디오는 AI Agent Application 개발에 관심이 있는 분들을 대상으로 만들어 졌지만
IT 전문가가 아니더라도 알아두면 도움이 될 만한 추론 관련 정보를 얻으 실 수 있을 겁니다.

-------------------------------------------------------------------

오늘은 본격적으로 REWOO 추론 방법론 LangGraph Tutorial 을 공부를 시작합니다.


AI Agent Application을 개발 하다 보면 도구 사용 관련해서 빈번하게 LLM API call 이 이뤄지게 됩니다.
이 추론 방법론은 추론과 도구사용을 분리함으로서 API call을 줄여 비용 절감을 할 수 있게 해 줍니다.
게다가 성능 향상까지 이루어 줍니다.


이 REWOO 추론 방법론이 비용절감과 성능향상을 동시에 이룰 수 있었던 비밀을 제대로 파헤쳐 보겠습니다.

 

https://youtu.be/qtob6xrZLwM?si=CctYX3di5F2XjoNi

 

 

반응형


반응형

이제 본격적으로 Plan & Execute 의 소스코드를 분석하고 실행해 봅니다.

 

AI 어플리케이션 개발자가 되시고 싶거나 어떻게 개발하는지 대략이라도 알고 싶으신 분들에게 도움이 될 겁니다.

 

이 AI 어플리케이션은 User의 질문을 받으면 그 질문에 답하지 않습니다.

더 좋은 답을 만들기 위해서 정답을 찾을 계획을 세웁니다.

 

바로 Plan 단계를 구현한 소스코드를 분석하고 직접 실행해 보겠습니다.

 

State Management, create Tool, create_react_agent, 

AI Agent 어플리케이션을 개발하기 위한 핵심 개념들을 배웁니다.

 

그리고 그 기술들을 사용해서 Planning Agent를 만드는 방법을 배웁니다.

 

"가장 유명한 K-Pop Girl group 멤버들의 생일은?"

 

이 질문에 과연 이 AI Agent 는 어떻게 답했을까요?


이 영상에서 확인해 보세요.

 

https://youtu.be/-FHz4VQh8qE?si=-G_egrCsjd7Q_mqC

 

 

 

반응형


반응형

오늘은 AI Multi-Agent 의 Supervisor Architecture 에 대해 공부 합니다.

 

Network Architecture는 Agent 들 끼리 직접 Communication 하는 반면에 Supervisor Architecture 의 Agent 들은 작업 결과를 Supervisor Agent 에게 보고 합니다.

Supervisor Agent 는 인간의 질문과 다른 Agent 들의 작업 결과를 받으면 그 다음 일을 어느 Agent 에게 시킬지 아니면 모든 일을 종료 하고 결과를 사용자에게  전달할지 여부를 판단하게 됩니다.

 

이 예제에는 두 개의 질문 예제가 있는데 간단한 질문에는 답을 하지만 조금 복잡한 질문은 처리하다가 Recursion Error 가 발생합니다.

 

이 부분이 현재 AI Multi Agent 어플리케이션이 퍼져 나가지 못하는 한계를 잘 보여 줍니다.

 

그 이유를 자세히 설명 드립니다.

 

놓치지 마시고 꼭 보세요.

 

그리고 그 해결 방법을 같이 고민해 보자구요.

 

https://youtu.be/fyh7nZEPpys?si=BQ9BQkdfQJT0WFaC

 



반응형


반응형

이번 한국의 비상 계엄령 사태 때 순간의 선택을 잘 못 해서 내란범이 될 처지에 놓인 사람이 많이 생겼습니다.

 

이 때 판단을 도와주는 도구로서 AI Agent 가 사용되고 있었다면 어떻게 됐을까요?

 

AI 는 수많은 데이터와 그 관계 정보를 바탕으로 경계가 모호한 문제에 대해 빨리 판단하는 기능이 있습니다.

 

미래에는 이 AI 기능을 여러곳에서 사용하게 될 것입니다.

 

AI Engineer 로서 이런 AI Product 를 개발 할 때 그 AI Agent 성능에 대한 테스트와 평가의 과정을 거쳐야 됩니다.

 

AI Engineer는 어떤 기준으로 어떻게 평가 해야 할까요?

 

저는 AI 의 이러한 판단 기능 때문에 AI Engineer 들은 인문학에 대한 교양을 많이 쌓아야 한다고 생각합니다.

 

같이 생각해 봅시다.

https://youtu.be/yMlG88KQ7jk?si=12SukZLo2hNiVXbA

 



반응형


반응형

오늘은 LangGraph Quick Start Tutorial 마지막 단원인 Part 7 : Time Travel 입니다.

 

이름에서 알 수 있듯이 과거로 돌아가서 당시 State를 바꾸는 겁니다. 

그러면 현재의 결과 값을 바꿀 수 있습니다.

 

바로 State 의 History 가 Checkpoint 단위로 Step 별로 다 관리가 되고 있기 때문에 가능한 겁니다.

 

이 기능을 사용하면 Agent 의 Process 중 오류가 발생하거나 아니면 디버깅을 하거나 혹은 다른 Business Requirements 중에 이 기능이 필요한 경우 적용해서 보다 고객의 요구 조건을 풍부하게 충족 시켜 주는 어플리케이션을 개발 할 수 있을 겁니다.

 

https://youtu.be/JgR5BJ7CLEw



반응형


반응형

오늘은 LangGraph Quick Start Tutorial Part 5 : Manually updating the State 를 다룹니다.

 

핵심 개념은 update_state 입니다.

 

Tool이나 AI 메세지를 임의로 만들어서 처리할 수 있구요.

이 때 Tool 이나 AI 를 Call 하지 않고 중간에 처리한 것 처럼 만드는 겁니다.

 

Message ID 를 사용하면 Tool 이나 AI 로부터 받은 기존의 메세지를 바꿀 수도 있습니다.

 

Graph 가 처리하는 과정에서 수정이 필요하거나 Agent의 궤적을 제어할 필요가 있을 때 유용한 기능입니다.

 

https://youtu.be/KitVTQivgHU

 



반응형


반응형

오늘은 Lang Graph 의 주요 기능 중 하나인 Human In The Loop 이라는 기능을 배웁니다.

 

AI Agent 가 일 하다가 어떤 결정을 해야 할 떄, 선택의 순간이 왔을 때 인간의 의견을 물어보도록 만들 수 있습니다.

 

Interrupt_before , Interrupt_after 가 AI Agent 가 그렇게 인간의 선택을 물어보도록 만들 수 있습니다.

 

이 HIL (Human In The Loop) 기능은 LangGraph 에서 Checkpointer 라는 개념을 기반으로 제공이 됩니다.

 

이 외에 지나간 과거의 State 를 변경할 수도 있고 그 기능을 이용해서 Time Travel 이라는 기능도 제공하고 있습니다.

 

오늘은 LangGraph Quick Start 의 Part 4 Human in the loop 를 공부하고 이어서 다른 다양한 기능을 계속 공부 하겠습니다.

 

그 개념들에 대한 공부가 마쳐지면 LangGraph 의 이러한 Checkpointer 를 이용한 advanced 한 기능들을 응용해서 다양한 Web Application을 만들어 보겠습니다.

 

https://youtu.be/eWe3dFHshgA

 



반응형


반응형
오늘 비디오는 구독자님이 Streamlit ,LangChain 그리고 LangGraph 에서 Chatbot 기능을 지원하기 위한 Memory 기능의 차이점을 문의 하셔서 거기에 대한 답변을 드리기 위해 만들었습니다.
답변을 준비하다 보니까 그냥 댓글로 몇마디 할 만한 사항이 아니더라구요.
AI 가 처음 나왔을 때 LangChain 에서는 Input Context 의 Length limit 에 대한 고민을 많이 했었던 것 같습니다.
그래서 대화 히스토리 관리하는데 있어서 input context를 줄이는 방법에 집중을 했었습니다. (Conversational Memory)
하지만 이 기능은 AI Model 들이 input context의 크기를 대폭 늘리면서 더 이상 필요성이 대두 되지는 않은 것 같습니다.
곧이어 나온 RAG 기능을 제대로 지원할 수 있는 대화 history 관리 툴을 LangChain에서는 제공 했습니다. (Conversation Retrieval Chain)
그런데 AI 세계는 멈추지 않았습니다.
좀 더 복잡한 문제를 해결하는 AI 서비스를 제공하기 위해 AI Agent 개념이 나왔습니다. (CheckPointer)
이것을 설명하기 위해서 AI , RAG , AI Agent 이런 AI App 개발의 트렌드 변화까지 다 말하게 됐네요.
반응형


반응형

지난 시간에 이어서 LangGraph Chatbot with Tool 에 대해 알려 드립니다.

지난 시간에 LangGraph로 구현하는 로직을 모두 완료 했었습니다.
이번 비디오에서는 그 로직에 Streamlit 의 session_state와 chatbot 기능을 더 해 완성된 AI Application을 만들어 봅니다.

LangGraph의 Tool을 사용해 최신 정보까지 제공하는 대화형 AI Application 개발하는 과정을 보실 수 있습니다.

 

https://youtu.be/M4ejvxxLF_w?si=6gUX8C5hZ-gfNNE-

 

 

그리고 아래 웹사이트로 가면 완성된 AI Application과 전체 Source Code도 받아 보실 수 있습니다.

https://catchuplanggraph.streamlit.app/

 

Catchup LangGraph Tutorial

This app was built in Streamlit! Check it out and visit https://streamlit.io for more awesome community apps. 🎈

catchuplanggraph.streamlit.app

 

반응형
이전 1 2 다음